
Website Fingerprinting:
Attacking Popular Privacy Enhancing Technologies

with the Multinomial Naïve-Bayes Classifier

Dominik Herrmann
University of Regensburg

93040 Regensburg, Germany
dominik.herrmann

@wiwi.uni-r.de

Rolf Wendolsky
JonDos GmbH

Bruderwöhrdstr. 15b
93055 Regensburg, Germany

rw@jondos.de

Hannes Federrath
University of Regensburg

93040 Regensburg, Germany

hannes.federrath
@wiwi.uni-r.de

ABSTRACT

Privacy enhancing technologies like OpenSSL, OpenVPN or Tor
establish an encrypted tunnel that enables users to hide content and
addresses of requested websites from external observers This pro-
tection is endangered by local traffic analysis attacks that allow an
external, passive attacker between the PET system and the user to
uncover the identity of the requested sites. However, existing pro-
posals for such attacks are not practicable yet.

We present a novel method that applies common text mining
techniques to the normalised frequency distribution of observable
IP packet sizes. Our classifier correctly identifies up to 97 % of re-
quests on a sample of 775 sites and over 300,000 real-world traffic
dumps recorded over a two-month period. It outperforms previ-
ously known methods like Jaccard’s classifier and Naïve Bayes that
neglect packet frequencies altogether or rely on absolute frequency
values, respectively. Our method is system-agnostic: it can be used
against any PET without alteration. Closed-world results indicate
that many popular single-hop and even multi-hop systems like Tor
and JonDonym are vulnerable against this general fingerprinting at-
tack. Furthermore, we discuss important real-world issues, namely
false alarms and the influence of the browser cache on accuracy.

Categories and Subject Descriptors

C.2.3 [Computer-Communications Networks]: Network Oper-
ations—Network monitoring; C.2.0 [Computer-Communications

Networks]: General—Security and protection (e. g., firewalls); I.5.4
[Pattern Recognition]: Applications; K.4.1 [Computers and So-

ciety]: Public Policy Issues—Privacy
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1. INTRODUCTION
The continuously increasing number of Internet access points al-

lows users to go online in public. While this development is gen-
erally appreciated, it comes at a price: Users face potentially mali-
cious service providers who can observe their traffic at low cost.
Moreover, wireless networks make it particularly easy for other
users to eavesdrop on foreign connections.

A number of privacy enhancing technologies (PET) have been
devised to address those risks. Apart from single-hop systems like
virtual private networks (VPN), simple SSL proxies or OpenSSH
tunnels, there are sophisticated multi-hop communication systems
like Tor and JonDonym (also referred to as JAP or AN.ON in the
past). They enable users to encrypt their traffic in order to protect
the contents and destination addresses from observers. In general,
this is achieved by establishing an encrypted tunnel from the user’s
machine to a trusted endpoint.

The protection offered by PETs is endangered by traffic analysis

techniques (cf. [29] for an overview), though. Attackers may gain
information regarding the transmitted contents or the identities of
the communication partners by inspecting the encrypted traffic. In
this paper, we concentrate on a special kind of traffic analysis tech-
niques that is known as “website fingerprinting”. An attacker can
learn the identity, i. e. the URLs, of websites that are downloaded
over an encrypted tunnel by comparing the observed traffic to a li-
brary of previously recorded fingerprints. Website fingerprinting
attacks exploit the distinct structure and size of HTML pages and
the included scripts, style sheets, images and other media objects.

Recent work [22] has demonstrated that such an attack is fea-
sible against OpenSSH tunnels due to characteristic patterns of
encrypted IP packets. However, their results do not seem to be
ready for practical usage: even under ideal conditions, their clas-
sifiers achieve an accuracy of only 73 %, that means only 73 % of
the requested web sites were identified correctly. Furthermore, all
previous studies have focused on the protection offered by simple
encrypted tunnels only. They have not yet looked at more sophisti-
cated technologies like web mixes or onion routing, emerging tech-
niques that help to improve privacy on the Internet.

There is already a number of traffic analysis attacks specifically
tailored for web mixes and onion routing (e. g. [26, 1, 2]). They
differ from our approach, though: they exploit certain design and
implementation characteristics. Our attack is more general as it is
agnostic of internal matters of the attacked PETs, but solely relies
on the IP packet size frequency distribution. Thus, it may be ap-
plied against any deployed PET with practically no alterations. Of
course, its accuracy may still be improved by tuning it for specific
PETs.
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Figure 1: Website fingerprinting scenario and conceivable at-

tackers

Contributions. In this paper, we present a novel website fin-
gerprinting technique based on a Multinomial Naïve-Bayes classi-
fier. According to our empirical evaluation, in a controlled environ-
ment our suggested approach is superior to comparable techniques
in terms of effectivity and efficiency. We also discuss issues in
real-world environments. Furthermore, we present the first com-
parative survey of the protection offered by a selection of popular
PETs against our fingerprinting attack.

The structure of this paper is as follows: In Section 2 we explain
our scenario for website fingerprinting and discuss the properties
of the attacker. In Section 3 we review related work and contrast
our contributions to existing publications. Section 4 describes our
research methodology and the construction of our novel website
fingerprinting method. We provide the results of various experi-
ments in Section 5. After discussing our findings in Section 6 we
conclude in Section 7.

2. SCENARIO
Website fingerprinting methods assume the following scenario:

a user wants to protect the information which websites he requests
from the Internet against third parties. This can be achieved with
systems that utilise privacy enhancing technologies to hide the traf-
fic. Usually, the user will have to install a dedicated client software

that establishes an encrypted link (tunnel) to a trusted server located
on the Internet. This tunnel endpoint relays the HTTP requests of
one or multiple clients to the various destination web servers. This
scenario is illustrated in Figure 1.

We further assume that the attacker employing website finger-
printing

• is able to record the traffic of the victim,

• is located between the victim and the PET system, so that he
can retrieve the victim’s true IP address from the traffic, and

• is able to identify the victim based on his IP address.

According to the attacker classification in [28] the following at-
tackers have this sort of power: local administrators, the user’s ISP,
governments and secret services. In case the victim is on a wireless
network, an attacker does not need any hardwired infrastructure, a
mobile computer is sufficient. Thus, arbitrary users on the wire-
less network may carry out the attack. We exclude attackers on the
user’s workstation, who can trivially attack his privacy, and attack-
ers having access to the servers of the PET system, who can launch
far more powerful attacks.

The attack consists of two phases: in the training phase the at-
tacker creates traffic fingerprints for a large number of sites (or for
a small set of interesting sites) and stores them together with the
site URLs in a database. In the testing phase the attacker records
the encrypted traffic of the user, creates fingerprints of small traffic
chunks and tries to match them with records in the database.

Summing up, website fingerprinting methods enable a passive,
local, external attacker (definitions according to the classification
in [9]) to circumvent the security offered by privacy enhancing
technologies. This is especially intriguing because most systems
have been designed with exactly this minimum attacker model in
mind and should provide sufficient protection against this sort of
attacker.

3. RELATED WORK
There is a huge number of publications on traffic analysis tech-

niques. In this section we concentrate on attacks on HTTP traffic
that aim to uncover the URLs of websites that are transmitted over
an encrypted channel.

Mistry [24] and Cheng et al. [7] were among the first to demon-
strate how attackers can determine the URLs of websites requested
via encrypted SSL connections. They showed that the transmit-
ted data volumes were characteristic for specific websites. Their
attacks were constrained to single web servers only, though. Fur-
thermore, the attacker would need access to the server in order to
determine the sizes of all HTML files and all objects referenced
therein. This attack is not feasible any more with the prevalence of
connection pipelining (cf. RFC 2616, section 8.1 [13]) and multiple
simultaneous connections as advocated by HTTP 1.1. These opti-
misations prevent the attacker from observing the size of individual
objects during transmission.

Hintz and Sun et al. analyse the encrypted traffic of HTTP proxy
servers that use SSL to protect the contents. They show how an
attacker can identify websites if he is in possession of a library of
their previously recorded “website fingerprints”. A website finger-
print is essentially the histogram of the sizes of transferred files
that can be observed on the wire when a website is requested.
While Hintz [14] demonstrates his attack only for a small number
of websites, Sun et al. [30] present evaluation results for a sample
of 100,000 websites. With their classifier that is based on Jaccard’s
coefficient, they are able to correctly identify 75 % of the sites in
their sample, at the cost of a false positive rate of 1.5 %. The attacks
are reasonably effective, but they cannot be applied to tunnel-based
PETs that hide the individual connections – and therefore the file
sizes – from outsiders. A common drawback of file-based attacks
is that they cannot be applied to VPNs, OpenSSH tunnels or con-
temporary anonymisation services like Tor.

We are aware of only two publications which are comparable to
the work presented in this paper: Bissias et al. [4] and Liberatore
and Levine [22] study an improved form of the fingerprinting at-
tack, using 100 and 2,000 websites, respectively. In contrast to ear-
lier approaches, their attack does not rely on the actual file sizes of
the transmitted objects. Instead, it is based on patterns to be found
in the observed encrypted IP packets. Both publications analyse the
protection offered by an OpenSSH tunnel. Bissias et al. apply the
rather crude metric of the correlation coefficient to the packet size
and packet inter-arrival time traces observed during the download
of a website. The effectivity of their approach is rather limited:
They can only identify 20 % of the web sites and have to guess up
to three times for the accuracy to approach 100 %.

In [22] Liberatore and Levine neglect timing information and the
order of packets. They compare packet size histograms with the
Jaccard coefficient and a Naïve Bayes classifier with kernel density
estimation, which will be reviewed in Sections 4.4.1 and 4.4.2 of
this paper. Given a sample of 1,000 sites and 4 training instances
per site, they are able to identify 73 % of the instances. They also
publish the effect of various padding techniques on the classifica-
tion accuracy in their publication and demonstrate that the attack
can be foiled by padding IP packets. In contrast to previous pub-
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lications, their packet-based fingerprinting may be applied to all
sorts of encrypted tunneling services deployed today.

Apart from Liberatore’s and Levine’s padding simulations, there
has been little research regarding protective measures against packet-
based fingerprinting so far. We are aware of the efforts of Kiraly et
al., though. They describe Traffic Flow Confidentiality [17], an ex-
tension to the IPsec code of the Linux kernel offering sophisticated
padding and packet clocking schemes. However, they have not yet
provided a thorough evaluation of their schemes against website
fingerprinting attacks. Using a data set of 50 pages, Wright et al.
demonstrate that their Traffic Morphing technique [36] is able to
thwart statistical traffic analysis algorithms by efficiently modify-
ing traffic of a website in a way so that it looks like another one. As
of this writing, these countermeasures have only been evaluated in
controlled environments, though. They have still to be integrated
into popular PET systems. We haven’t included them in our study,
because in this paper we focus on an evaluation of technologies that
are already widely deployed today.

Another related area of research deals with privacy issues in
anonymized network traces: an attacker may be able to determine
which websites were accessed in publicly available NetFlows by
searching them for characteristic website fingerprints. Recent work
[8, 20] suggests that such attacks are difficult to carry out in real-
ity due to several issues, e. g. noise intruced by the browser cache,
interleaved connections, the inability to separate individual page
downloads and problems with closed-world evaluations of accu-
racy. As of now, these issues are only understood for website fin-
gerprinting based on anonymized NetFlow traces, though, which is
different from website fingerprinting for encrypted tunnels based
on IP packet size distributions. As some of their findings are cer-
tainly of relevance for our attack, we discuss our results in the light
of their research in Section 6.

Although our approach is based on the work of Liberatore and
Levine, it differs in several ways. First, we apply a novel finger-
printing technique and evaluate it in terms of accuracy and perfor-
mance. Secondly, we compare the effectivity of two existing fin-
gerprinting methods with our technique using a common data set
to guarantee comparability. Finally, while related publications con-
centrate on a singular technique, i. e. OpenSSH tunnels, we provide
evaluation results for a number of popular PETs.

4. METHODOLOGY
In this section we will describe the evaluated systems and finger-

printing techniques as well as the construction of our novel tech-
nique based on the Multinomial Naïve Bayes classifier.

4.1 Analysed Systems
In contrast to previous works, each of which focused on a single

system for encrypted tunnels, we have evaluated the protection of-
fered by six systems utilising various privacy enhancing technolo-
gies against website fingerprinting. All of the systems under con-
sideration have distinct properties, which motivates an analysis of
differences and similarities.

The analysed systems fall into two categories: single-hop and
multi-hop systems. The first group constitutes systems that consist
of a single proxy server that relays traffic of a single client or multi-
ple clients to the destination web servers. The connection between
the web browser and the proxy server is encrypted. The following
single-hop systems are analysed in our evaluation:

OpenSSH can be configured with dynamic forwarding to offer a
local SOCKS proxy (cf. RFC 1928 [21]) used by the browser.1

1Homepage: http://www.openssh.org/

The SSH Connection Layer (cf. RFC 4254 [37]) supports
multiplexing of connections and flow control, which facili-
tates fast web surfing.

OpenVPN provides a virtual private network which transparently
relays all traffic. We configured OpenVPN2 in routing mode

to encapsulate raw IP packets via OpenSSL within UDP pack-
ets.

CiscoVPN establishes a virtual private network with a remote VPN
concentrator. In contrast to OpenVPN, the evaluated Cisco
VPN establishes an IPsec tunnel via ESP. The client has been
configured for NAT traversal via NAT-T (cf. RFC 2948 [15]),
which wraps ESP traffic in UDP packets.

Stunnel can be used to establish an encrypted connection to a re-
mote proxy server (in our case tinyproxy3). In contrast to
the other systems, Stunnel4 does not establish a long-lasting
tunnel. Instead, each TCP connection of the browser to the
proxy server is relayed individually via OpenSSL, causing
TCP and TLS handshakes for each connection to the proxy
server.

In future work we also plan to analyse WiFi connections encrypted
on the link layer (WPA), which belong to this category as well.

Single-hop systems have a common drawback: users must trust
the service provider because he sees the unencrypted data that is
sent to the destination servers. This is different for multi-hop sys-
tems, which relay users’ traffic over several hosts before sending it
to the web server. Clients encrypt their traffic multiple times to en-
sure that only the last node, which does not know the identity of its
users, has access to the decrypted data. We have analysed two pop-
ular systems, which belong to this category, Tor5 and JonDonym6:

Tor is based on the idea of Onion Routing [10], i. e. the Tor client
wraps the data packets in multiple layers of encryption, which
are “peeled off” as packets are relayed over multiple onion

routers.

JonDonym (formerly known as JAP and AN.ON) is an implemen-
tation of web mixes [3] and adapts the idea of Chaum’s mix
networks [6] for web traffic. An important difference be-
tween JonDonym and Tor is their network topology: while
the Tor client constructs short-lived circuits by choosing (usu-
ally) three Tor routers, a user of JonDonym selects a static
cascade of (usually) three mixes over which he intends to re-
lay his web traffic.

After a preliminary study we decided to not include the multi-hop
system I2P7 in our study because its performance and stability was
at this time not reliable enough to generate enough samples. More-
over, I2P is not primarily designed for relaying web traffic, but
rather for communication within the I2P network.

Note that while the analysed single-hop systems relay all traf-
fic with only minor interference, the multi-hop systems operate on
fixed-length messages, which may considerably affect the shape of
the network traffic.

2Homepage: http://www.openvpn.net/
3Homepage: https://www.banu.com/tinyproxy/
4Homepage: http://www.stunnel.org/
5Homepage: http://www.torproject.org/
6Homepage: http://www.jondonym.de/
7Homepage: http://www.i2p2.de/
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4.2 Research Assumptions
Comparable website fingerprinting studies in [4, 22, 30] have

modeled the real world using a set of simplifying assumptions. Al-
though it has been argued that a determined attacker may very well
be able so satisfy those assumptions, recent work on NetFlows in-
dicates that some of them are challenging [8, 20]. For the sake of
comparability of results, we based our experimental setup for the
main part of this paper on the same assumptions, though:

1. The attacker knows the PET the victim is using and may use
it himself to create a database of website fingerprints. To this
end, the attacker may e. g. inspect the format of the encrypted
payload or the TCP ports used for communication.

2. The attacker knows all the pages the victim is going to re-
trieve and creates fingerprints for them (i. e. the classifier will
never encounter a website for which it has not been trained).
Recent research has shown that the relative high accuracies
achieved in such a closed-world scenario cannot be repro-
duced in real environments. While we stick to this assump-
tion in the main part of the paper, we will discuss its impact
on our technique in Section 6.

3. The attacker is able to build fingerprints using a similar In-
ternet access like the victim (ruling out network-level differ-
ences).

4. The attacker knows the victim’s browser and its configura-
tion and is able to use it to create his fingerprints database
(ruling out any browser-specific transmission differences).

5. The victim’s browser is configured appropriately (no caching,
no prefetching, not querying for software updates). While
this configuration deviates from the default, it is (a) neces-
sary for comparability with previous work, and (b) follows
the privacy guidelines of the developers of the PETs Tor and
JonDonym (cf. the JonDoFox8 browser).9 In Section 6 we
will show that the browser cache has only a moderate impact
on the accuracy in our sample.

6. The attacker can extract all packets belonging to an individ-
ual website from the victim’s traffic, i. e. the victim is re-
questing pages sequentially due to think times between re-
quests and there are no background downloads or overlap-
ping transmissions. While previous work has shown that it
may be difficult to extract individual web sessions from net-
work traces in reality, this assumption improves reproducibil-
ity and comparability of our experiments.

We plan to relax the aforementioned assumptions and analyse
their influence on the effectivity of the attack in future work. In
Section 6 we will revisit some of them and provide first results
retrieved from appropriate modifications of our setup.

4.3 Modelling the Classification Problem
The website fingerprinting scenario outlined in Section 2 can be

expressed as a data mining classification problem. A classifica-
tion problem is a supervised induction task, in which the training

instances are labeled with class information. The goal is to accu-
rately predict the class of test instances. Given an unlabeled traffic
dump, i. e. a test instance~x of a victim, the attacker wants to find the

8https://www.jondos.de/en/jondofox
9Actually, Torbutton users may choose between disabling caching
completely and enabling memory-only caching.

 0

 10

 20

 30

 40

 50

-1500 -1000 -500  0  500  1000  1500

F
re

q
u

e
n

c
y

Packet size [byte]

Figure 2: Instances are represented by the frequency distribu-

tion of IP packet sizes as observed during the download of a

website (packets sent from client to server denoted by negative

sign). Figure shows traffic observed during download of a web-

site using OpenSSH.

corresponding URL, i. e. its class ci, from the set of all candidate
classes C. To this end, the attacker trains the classifier using n la-
beled training instances Itrain = {(~x1,c1) , . . . ,(~xn,cn)}∀ci ∈C. The
next paragraph describes the attribute vectors we use for instance
representation and motivates the use of text mining techniques.

Attributes. A crucial step in data mining is feature extraction
and representation (cf. [35]). Based on the results of previous re-
search and our preliminary studies, we decided to operate on the
frequency distribution of the IP packet sizes that an attacker can
observe during the transmission of a website. While – in contrast
to [4] – we neglect information regarding packet order and timing,
we do take into account the flow direction (upload/download) of
the packets. We denote the flow direction by assigning a positive
sign to all packets that the client received and a negative sign to
packets that the client sent. Thus, each instance is represented by a

multiset x = x
fx1

1 ,x
fx2

2 , . . . ,x
fxm
m containing packet sizes x j and their

respective occurrence frequencies fx j
. From the multisets, attribute

vectors can be easily obtained: ~x = f = ( fx1
, fx2

, . . . , fxm
), fx j

∈ N0

for all existing packet sizes m in the sample. Figure 2 visualises an
arbitrary instance from our sample as a histogram. Note that our
instances closely resemble the typical document representation in
the domain of text mining, where instances are represented by term
frequency vectors.

4.4 Known Website Fingerprinting Techniques
In this section we will shortly describe the previously published

website fingerprinting techniques we applied to our sample.

4.4.1 Jaccard’s Classifier

Jaccard’s coefficient is a similarity metric for sets [31], which
is often used for unsupervised learning tasks. It can be applied
to classification problems as well, though, and it has already been
successfully utilised for the purpose of website fingerprinting [22,
30]. In order to obtain sets from instances represented as multisets,
packet frequencies are neglected and only the binary information
regarding the occurrence of the various packet sizes is considered.
Jaccard’s coefficient of two instances represented as sets A and B is

then given by sAB =
|A∩B|
|A∪B|

, sAB ∈ [0;1].

Work by Liberatore and Levine shows how to obtain a classifier
based on this similarity metric (which we call Jaccard’s classifier)
that provides an estimate of class membership probability [22]. In
their study of OpenSSH tunnels, Jaccard’s classifier achieves over
60 % accuracy under certain research assumptions (cf. Section 4.2).
Apparently, OpenSSH does not hide the characteristic packet sizes
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created during the download of many sites. Their results suggest
that actual packet frequencies are of minor importance for the clas-
sification.

4.4.2 Naïve Bayes Classifier with Kernel Density
Estimation

The Naïve Bayes (NB) Classifier is a widely used supervised
learning method whose characteristics have been researched ex-
tensively. It naïvely assumes independence of attributes, which is
often not the case for real-world problems. Nevertheless, it has
been applied to many classsification problems with great success.
Of particular interest is its application to traffic analysis problems
(cf. [12, 38, 25, 34]) and to website fingerprinting [22] in previous
works. A detailed description of this classifier can be found in the
literature, e. g. in [35, 16].

In contrast to Jaccard’s classifier, NB operates directly on multi-
set instances, i. e. it takes into account the frequencies of the various
packet sizes. Each packet size is treated as a totally independent at-
tribute with the occurrence frequency as attribute value. With sim-
ulations Liberatore and Levine find that NB will be more robust
than Jaccard’s classifier, if IP packets are padded [22]. They show
that it is less effective in the absence of padding, though.

By naïvely assuming that all attribute values are the results of
independent random variables X j, the NB classifier estimates the
probability that an unlabeled test instance represented as attribute
vector f belongs to some class ci. This is repeated for all classes in
order to find the class with the highest probability. The probabilities
are calculated by estimating for each attribute x j the probability
that it occurs fx j

times in an instance belonging to class ci and
multiplying the probabilities of all attributes:

p(ci|f) =
p(ci) p(f|ci)

p(f)
∼ p(ci)

n

∏
j=1

p(Xx j
= fx j

|ci)

p(X j = fx j
|ci) is usually estimated by assuming that X j is nor-

mally distributed and estimating a Gaussian distribution from the
training data. Kernel density estimation improves on this concept
by estimating the probabilities p(Xx j

= fx j
|ci) via an aggregation

of a large set of Gaussian kernels.
While this method has shown very effective in practice, it intro-

duces additional computational complexity. John and Langley de-
duce that with k attributes and n training instances, time complexity
of training the classifier is O(nk), while for testing of m instances it
is O(mnk) [16] . Another drawback of the NB classifier is that it at-
taches particular importance to the exact number of occurrences of
packet sizes. Given a very small number of (homogenous) training
instances, the variance of the estimated Gaussian kernel may be-
come very small. In this case NB may already fail to classify a test
instance correctly when occurrence frequencies of its packet sizes
deviate from the distribution in the training instances only slightly.

4.5 Our Novel Website Fingerprinting Method
We will now describe how to build a Multinomial Naïve Bayes

classifier applying classical text mining techniques to traffic finger-
prints of websites.

4.5.1 Multinomial Naïve Bayes (MNB) Classifier

The Multinomial Naïve Bayes (MNB) classifier is a classical
technique used in the domain of text mining. It has been used for
semi-automated document classification tasks such as the detec-
tion of spam mails. Documents are represented as term frequency
vectors which are similar to our packet size frequency vectors. Al-
though the construction of the MNB classifier relies on naïve as-

sumptions10, this method has proven very accurate in practice. Due
to space restrictions we cannot describe all details here, a detailed
explanation of MNB can be found in a recent text book, e. g. [23,
p. 258].

There is an important difference between NB and MNB. The
NB classifier presented in Section 4.4.2 estimates probability of
class membership using Gaussian kernels, thus choosing the class,
whose occurrence frequencies of the various packet sizes match
best with the observed values in the test instance. In contrast,
MNB operates on the frequency distribution of all packet sizes at
once, i. e. it compares the silhouette of the histogram of the test in-
stance (cf. Figure 2) with the aggregated histogram of all training
instances per class. Therefore, the calculation of the conditionals
P(f|ci) is different from the NB classifier:

P(f|ci) ∼
m

∏
j=1

P(X = x j|ci)
fx j

Given m unique packet sizes present within all training instances
of all classes, the resulting probability is proportional11 to the prod-
uct of P(X = x j|ci), which is the probability that a certain packet
size x j is drawn from the aggregated multiset of all packet size fre-
quencies of the training instances of class ci. The individual condi-
tional probabilities will contribute fx j

times to the result, where fx j

is the number of occurrences of packet size x j in the unlabeled test
instance.

4.5.2 Application of Text Mining Transformations

Researchers have come up with a set of optimisations that ad-
dress unwanted properties that impair the accuracy of the MNB
classifier (cf. [35]). Due to their importance for practical text min-
ing problems it is interesting to investigate their utility for website
fingerprinting.

TF Transformation. Using the raw occurrence frequencies the
decisions of the MNB classifier are biased towards classes which
contain many packets and/or packets with high frequencies. This
is very relevant to traffic fingerprints of typical websites, which are
dominated by TCP acknowledgements and packets with the size
of the MTU. In text mining this problem is addressed by a sublin-
ear transformation of the frequencies: f∗x j

= log(1 + fx j
). This is

referred to as term frequency (TF) transformation.

IDF Transformation. The MNB classifier treats all attributes
(packet sizes) equally, neglecting their relevance. In fact, some
packet sizes (e. g. with the size of the MTU) are part of every in-
stance and do not confer much information about the class. This is
similar to the classification of text documents, where this problem
is alleviated using the inverse document frequency (IDF) transfor-

mation. Given n training instances the occurrence frequencies fx j

are transformed using the document frequency dfx, i. e. the number
of instances that contain term x: f ∗x j

= fx j
· log n

dfx j

.

The application of both of the aforementioned transformations is
referred to as TF-IDF transformation.

Cosine Normalisation. Although the length of a text seems
to be a promising attribute for classification of documents, results
from empirical research have shown that the accuracy of the MNB
classifier can be improved by normalising the lengths of all doc-

10Positional independence assumption (the order of terms is ne-
glected) and conditional independence assumption (terms occur in-
dependently from each other).

11It is only proportional and not equivalent to the product because
for clarity reasons we have left out the multinomial factor, which is
constant for all classes and therefore does not influence the decision
of the classifier.

35



uments. This is achieved by applying cosine normalisation to the
attribute vectors, i. e. the transformed frequencies are divided by

the Euclidean length of the raw vectors: f norm
x j

=
f ∗x j

∥

∥

∥
( f ∗x1

,..., f ∗xm
)
∥

∥

∥

.

5. EVALUATION
In the following sections, we show that the application of se-

lected text mining transformations can improve the accuracy of the
MNB classifier so much that it outperforms the other classifiers
against OpenSSH tunnels. Furthermore, we show the high robust-
ness of the classifier and find that it is able to identify more than
89 % of instances even when only a single training instance is avail-
able. With increasing age of the recorded fingerprints the results
drop, but only rather slowly. Finally, evaluating the protection of-
fered by various privacy enhancing technologies, we find that users
of typical single-hop systems fall prey to the website fingerprinting
attack, while the multi-hop systems offer some protection.

The accuracy of the classifiers were evaluated against real-world
traffic dumps. All evaluations were carried out with Weka, an open-
source data mining toolkit by the authors of [35]. We integrated our
own Java implementation of Jaccard’s classifier which conforms to
the description in [22] into Weka, used Weka’s NaïveBayes clas-
sifier with Gaussian kernel density estimation and its Multinomi-

alNaïveBayes classifier in conjunction with the StringToWordVec-

tor filter to implement our MNB classifier. All experiments were
carried out using Weka’s Experimenter module using the Filtered-

Classifier that takes care that the classifiers do not learn anything
about the test instances during training.

5.1 Data Collection and Sampling
The evaluation took place on real-world traffic dumps written by

a proxy server with a typical configuration. As we were the first
to analyse multiple privacy enhancing technologies, we could not
make use of existing traffic dumps available from previous studies.
On the other hand, we could not get data from real anonymisation
systems, as most of them do not log any data. Instead, we accessed
the log files of a medium-range proxy server used by approximately
50 schools serving about 130,000 HTTP requests per day. Only ex-
isting data was used and no data was created just for the purpose
of this analysis, as this would normally need the permission of all
users and is therefore very complex 12. We retrieved the 2,000 most
accessed DNS domain names from the log files between January
2007 and September 2007 and inspected them manually for ap-
proval. Most notably, we removed all URLs with domains whose
servers did not return a website for humans, e. g. update notifica-
tion pages and ad banner servers. After data cleansing 775 domain
names remained in the sample.

In order to get realistic traffic dumps, we set up a Linux client
machine, installed all the client programs for the analysed systems
mentioned in Section 4.1 and connected it directly to the Internet.
We created a Ruby script AutoFox.rb, which is based on firewatir13

and the JavaScript Shell14, to automatically retrieve the sites with
Firefox 2.0 15. We configured the browser according to the research
assumptions (cf. Section 4.2) and adjusted the proxy settings to re-
lay all web traffic over the system under consideration.

Before each request AutoFox started an instance of tcpdump on
the client machine with an appropriate capture filter that gathered

12For privacy reasons, we moreover suggested to the proxy operator
to stop his logging activities as soon as possible.

13Homepage: http://code.google.com/p/firewatir/
14Homepage: http://www.croczilla.com/jssh/
15Homepage: http://www.mozilla.com

System Ntotal Ntotal/hour p

CiscoVPN 29,770 562 527
OpenSSH 131,960 498 497
Stunnel 21,154 480 1,491
OpenVPN 75,724 476 535

JonDonym 33,615 320 504
Tor 8,510 85 613

Table 1: Total number of instances per system, download speed

and average number of packets per instance.

only the IP headers of the encrypted packets. Once the download
of the site was finished, the traffic dump was collected for later
analysis and, after a small pause, the script proceeded with the next
site. If the download was not finished within 90 seconds it was
aborted. After all 775 URLs had been visited, the script restarted
the browser and started over from the beginning. We left AutoFox

running several days in a row for each of the analysed systems.
While we created over 73 GB of HTTP traffic between 2008-01-
08 and 2008-03-06 with this setup, the (uncompressed) 300,733
tcpdump log files containing just the IP headers amounted to 14 GB
only. We extracted packet size and direction of each packet from
the tcpdump logs, flagged packets sent from the client to the server
with a negative sign and stored them in a MySQL database. The
anonymised traces used for our experiments are available at the
authors’ website.16

Table 1 provides an overview of the samples. The systems are
very different in terms of download speed Ntotal/hour and average

number of packets per instance p. Given the results of an empirical
study regarding their performance [33], the slow download speeds
offered by the multi-hop systems Tor and JonDonym are not sur-
prising. While download speeds are of little importance for web-
site fingerprinting based on IP packet sizes, differences in p could
influence the accuracy of the classifier a lot.

Due to large variations in Tor’s performance we decided not to
clock the downloads statically, but to download sites as fast as pos-
sible. Therefore, the number of instances per site and day varies
between 2 (Tor) and 17 (CiscoVPN). We avoided resubstitution

errors during classification by ensuring that training and test in-
stances were drawn from different parts of the sample separated
by ∆t days. For each experiment we sampled a certain number of
training and test instances from the dataset so that the following
conditions were met:

• using a pseudo-random number generator with seed si, for
each site ntrain training instances were drawn randomly from
a contiguous 48-hour time window starting at a random time
ttrainstart and ending at ttrainstart +48h,

• for each site ntest test instances were drawn from another 48-
hour window starting at ttrainstart +48h+∆t .

This methodology ensures that training and test sets are stratified,
which is an important precondition for consistency and relevance of
the results (cf. [35]). For each experiment we created 25 samples
using 25 different seeds si to ensure that the whole dataset was
utilised. All experiments were repeated for all samples.

Statistical Significance of Results. We used the corrected re-

sampled paired t-test [35, p. 157] to compare various settings using
a significance level of α = 0.05. We will indicate p-values smaller
than α , i. e. the null hypothesis that two results are not different is
rejected with probability of error below α , with the term significant

in italics.

16http://www-sec.uni-regensburg.de/website-fingerprinting/.
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Figure 3: Accuracy of MNB classifier for various transforma-

tions

5.2 Performance of the MNB Classifier
The protection of OpenSSH against website fingerprinting has

been extensively studied in related work. We will now evaluate the
MNB classifier against this system. As will be shown later, the
accuracy a classifier achieves against OpenSSH is of relevance for
a number of other systems as well.

Accuracy. We use the accuracy of a classifier as a measure of
its effectivity. This metric indicates the proportion of instances
(recorded traffic dumps of individual website downloads) that a
classifier attributed to the correct class (URL).

5.2.1 Influence of Transformations

First, we will analyse the influence of the text mining transfor-
mations presented in Section 4.5.2 on the accuracy of the classifier.
The results of an experiment with ntrain = {1,4}, ntest = 10 and
∆t = 6 days using the OpenSSH dataset are shown in Figure 3.
Without normalisation IDF and TF-IDF transformations surpass
the TF transformation in terms of accuracy. Accuracies rise sig-

nificantly (cf. Section 5.1 for our definition of significance), once
attribute vectors are normalised. Normalisation of frequencies that
have been processed by the IDF transformation is counterproduc-
tive, though. On the OpenSSH dataset the combination of the TF
transformation with normalisation achieves best results (94.18 %
for 4 training instances).

5.2.2 Size of Training Set

Smaller numbers of required training instances mean less effort
for carrying out the attack. Figure 4 shows the results for different
values of ntrain (keeping ntest = 10 and ∆t = 6 days). With only one

training instance, already 90 % of test instances are classified cor-
rectly. Accuracy slowly approaches 96 % for 16 training instances.
According to the t-tests, the difference in accuracy is not significant

between 1 and 2 instances, between 2 and 4 instances and between
4 and 8 instances. Accuracies differ significantly for 1 and 4 train-
ing instances, though. Therefore, in the following we will use 4
training instances, which seems to be a good compromise between
necessary resources and achievable accuracy.

5.2.3 Robustness

Our website fingerprinting attack exploits characteristics in the
frequency distribution of the size of IP packets observed during
transmission. This distribution is determined by the contents and
structure of the HTML page and any embedded elements. Conse-
quently, changes of the content may affect the fingerprint of the site,
thus diminishing the accuracy of the classifier. There is extensive
research regarding the type and frequency of changes to web sites
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Figure 4: Accuracy for various training set sizes
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(cf. for example [32, 18, 19, 27]). A key finding of those research
efforts is the distinction between changes in terms of site structure,
which occurs rather seldom, and content, which occurs frequently
on many popular websites.

Fortunately, changes to the content affect the frequency distri-
bution of IP packets only moderately, i. e. our website fingerprints
remain accurate for a rather long time. Changes to the content are
more challenging, though, for fingerprinting attacks that rely on the
file sizes of transferred objects (cf. [24, 7, 14, 30] and for attacks
on NetFlows [8, 20].

To test this hypothesis, we ran multiple experiments with the
MNB classifier on the OpenSSH dataset with ntrain = 4, ntest = 10
for varying values of ∆t . The results are shown in Figure 5. Even
for delays as long as ∆t = 17 days, 91.3 % of the test instances
were classified correctly. The accuracies for delays up to 4 days
do not differ significantly. We estimated the relationship between
∆t and accuracy with a regression analysis and found accuracy ≈

97.11 · e−3.735·10−3∆t .
This robustness property makes the attack more convenient. The

attacker will achieve good results, even if he updates his database
of fingerprints only once in a while – or a couple of days after

he recorded the traffic dump of the victim. The MNB classifier
is known for its ability to adjust itself to changing characteristics
by continuous training with new instances. This property, which
is referred to as concept drift in the text mining area [23, p. 269],
makes the MNB classifier an ideal technique to implement long-
term website fingerprinting attacks.
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against OpenSSH using various transformations.

5.3 Comparison of Website Fingerprinting
Methods Against OpenSSH

In this section we will compare existing website fingerprinting
techniques to our MNB classifier using the OpenSSH dataset as
a common testbed. Therefore, we compare accuracies and time
needed for training and testing with parameters ntrain = 4, ntest = 4
and ∆t = 6 days.

Figure 6 shows the accuracies of the three classifiers. The per-
formance of the Naïve Bayes classifier (82.42 %) is significantly

worse than Jaccard’s classifier (86.68 %), which is in line with the
findings in [22]. Note that the accuracy of the former degrades
when text mining transformations are applied to packet size fre-
quencies, while the accuracy of the latter is not affected at all as
Jaccard’s classifier is unaware of the packet frequencies anyway.

While our MNB classifier is outperformed by the other methods
when the frequencies are not transformed (76.60 %), it achieves a
significantly higher accuracy once cosine normalisation is applied
to the attribute vectors (91.63 %). Adding the TF transformations
adds another significant increase to the values (94.31 %).

Having established the significance of this ranking for OpenSSH,
one cannot deduce that the MNB classifier outperforms the other
classifiers against any privacy enhancing technology, of course.
Due to space restrictions in this paper, we are unable to present
evaluation results of all the fingerprinting techniques against all
systems, though.

Figure 7 shows the time needed for training and testing of 4 ·
775 = 3,100 instances. According to our results, the MNB clas-
sifier is faster than the other classifiers for both, training and test-
ing. It is able to classify about 294 instances per second. The poor
result of NB can be attributed to the high cost of kernel density
estimation. As we haven’t tuned our implementation of Jaccard’s
classifier for performance, its performance might still be improved
by some degree.

Conclusions. According to the results in this section the MNB
classifier outperforms the previously proposed website fingerprint-
ing techniques in terms of effectivity and efficiency against traffic
protected by the well-researched OpenSSH tunnels. Its accuracy
especially benefits from normalising attribute vectors, which re-
places actual occurrence frequencies with relative ones. Further-
more, we have shown that it is qualified for practical purposes: the
instance representation remains stable over several days, high ac-
curacies can be achieved with a single training instance only, and
it would be even fast enough for real-time traffic analysis for small
user groups.

Apparently, MNB is a good compromise between Jaccard’s clas-
sifier and NB with kernel density estimation. While the former
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Figure 7: Time needed for training and classification using 4

training and 4 test instances per site.

neglects occurrence frequencies altogether and is thus unable to
discriminate sites with similar packet sizes, the latter treats occur-
rence frequencies very seriously – apparently too seriously. As NB
matches instances based on absolute frequencies, it is misled once
packet size frequencies change. In contrast, using cosine normal-
isation the MNB classifier operates on relative frequencies only,
thus focusing on the proportions of the frequencies of the packet
sizes. According to our results, this feature representation scheme
is the most accurate one against OpenSSH and – as will be shown
in the next section – is effective against other privacy enhancing
technologies as well.

5.4 Attacking Popular PETs Using the MNB
Classifier

Finally, we present a comparison of the accuracy of MNB against
the analysed systems presented in Section 4.1. Table 2 summarises
the results. For all tested single-hop systems, we achieved an accu-
racy of more than 94 %, the best against Stunnel, where over 97 %
of instances were classified correctly. Stunnel offers significantly

less protection than all other systems, which is probably due to the
additional information gained from the many TCP and TLS hand-
shakes in each traffic dump. At first sight, Tor significantly offers
the best protection against the attack (accuracy below 3 %).

With accuracies of more than 90 % none of the tested single-
hop systems offers sufficient protection against the MNB classifier.
From an information-theoretic viewpoint, even the multi-hop sys-
tems do not protect perfectly, though: the accuracies found for them
are well above the accuracy achievable by randomly guessing the
class without any context knowledge ( 1

775 ≈ 0.13%).
Allowing the classifier to make multiple predictions for each test

instance increases its accuracy (cf. [22]). We repeated the exper-
iments with a modified MNB classifier: instead of just predicting
the class with the highest probability, it retrieved the top k classes
from the list of predicted classes (sorted in descending order by
class membership probability). If the actual class was among the
list of predicted classes, the test instance was counted as correctly
classified, otherwise as incorrectly classified. For k = 3 and k = 10
the accuracy values for Tor increase to 16.69% and 22.13%, re-
spectively, for JonDonym they increase to 31.70% and 47.53%.

The different encapsulating mechanisms of the systems are re-
flected by nsizes_total, the total number of distinct packet sizes of
the aggregated packet size frequency distribution of all instances.
According to our results, low values of nsizes_total do not corre-
late with poor accuracy (cf. CiscoVPN), though, and higher val-
ues of nsizes_total do not automatically lead to higher accuracies
(cf. JonDonym vs. Tor).
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Stunnel OpenSSH CiscoVPN OpenVPN JonDonym Tor

nsizes_total 1605 420 108 2898 205 869

Best classifier TF-N TF-N TF-N TF-N N N

Avg. accuracy 97.64 % 96.65 % 96.17 % 94.94 % 19.97 % 2.96 %

Std. deviation 0.16 % 0.22 % 0.24 % 0.30 % 0.47 % 0.22 %

Table 2: Aggregated results of all instances grouped by evaluated system using the MNB classifier. Table shows total number of

unique packet sizes in the datasets, the combination of transformations that achieved best results on average (TF-N: TF transforma-

tion and cosine normalisation; N: cosine normalisation only) and the average accuracy for 20 samples.

While the classifier benefits from cosine normalisation of at-
tribute vectors against all systems, the TF transformation is sup-
portive for the single-hop systems only. Apparently, the different
occurrence frequencies are needed for classification of sites trans-
ferred by multi-hop systems. This finding is in line with the results
from simulations in [22]: it is due to the repackaging of HTTP re-
quests and padding, which is carried out by both, JonDonym (mix
packets: 998 bytes) and Tor (cell size: 512 byte).

But anyway, why do the dumps of Tor and JonDonym contain so
many different packet sizes, despite a fixed size of their packet/cell
content? The most frequent packet sizes in the Tor traffic dumps
are, in descending order, 1500, −52, −638, 52, 638 and 1150 bytes,
accounting for 87.6 % of all Tor packets. The remainder is likely
caused by packet fragmentation carried out by the operating system
and retransmissions, which we frequently observed in Tor’s traffic
dumps. The application of the TF transformation is counterproduc-
tive for Tor’s and JonDonym’s traffic as it distorts the frequency
proportions so that the noise becomes more relevant. This is illus-
trated in Figure 8, which contains the aggregated histograms before
and after application of the TF transformation to Tor’s aggregated
histogram.

Our results also indicate that the protection offered by JonDonym
is primarily lower in comparison to Tor, because JonDonym’s traf-
fic contains less noise, as indicated by the smaller number of packet
sizes and the fact that the 93.6 % of packets have sizes of 1500,
−52, −1050, 1050 and 52 bytes. We attribute this difference to
the fact that our Tor client established a multitude of connections to
various onion routers running differing versions of Tor and operat-
ing systems. For JonDonym we preselected a static mix cascade in
the JAP client to collect the traffic dumps. This hypothesis can be
tested in future work by repeating our experiments on a private Tor
network running in a controlled environment.

Of course, the poor accuracy against multi-hop systems does not
mean that these systems are not vulnerable. Our system-agnostic
method operates naïvely on all observable IP packets neglecting
their content or relevance. Specifically tailored feature extraction
methods that neglect irrelevant packets and reconstruct the fixed-
length messages of JonDonym and Tor will likely be more effec-
tive.

6. DISCUSSION
It is not really surprising that the evaluated single-hop systems

offer practically no protection against the website fingerprinting at-
tack. These systems encrypt the transferred HTTP messages with-
out structural modifications, thus exposing the deterministic frag-
mentation of the data sent over TCP streams to the observer. This
fragmentation is likely dependent to some degree on the operating
system, the type of the Internet connection and the browser and its
configuration. We therefore expect that the accuracy of website fin-
gerprinting attacks is degraded in case training and testing instances
are not recorded in the same environment. This issue is not rele-
vant to our classifier only, but applies to many other traffic analysis

techniques as well. Consequently, results generated from empirical
studies based on the assumptions mentioned in Section 4.2, have to
be regarded as best case estimations. Future research has to analyse
the impact on accuracy that is incurred by relaxing those research
assumptions.

Some of the assumptions have only little impact on the accu-
racy of our classifier. In a preliminary study we tried to classify
OpenSSH traffic caused by a browser with caching enabled. Us-
ing a comparable setup like [8] we configured the browser with
a cache size of 2 GB so that no objects would be expunged from
the cache due to space restrictions. We then repeated the experi-
ment as outlined in Section 5.1. Results dropped significantly, but
only slightly from 96.65 % (with caching disabled) to 91.70 %. Al-
though this finding suggests that our technique is only moderately
affected by caching, one has to be aware of the fact that the deter-
ministic nature of the page retrieval process used in our setup may
not accurately reflect the diversity of possible cache states in real-
ity. This restriction also applies to related studies like [8], though.
More sophisticated simulations may provide a more realistic eval-
uation of browser caches in the future.

Relaxing other assumptions is more problematic, e. g. due to
the cost of false alarms17, when not all of the URLs in the pool
are known to the attacker. A false alarm is a classification for a
URL that is in the set of uninteresting instances. An ideal classi-
fier would refrain from choosing a class for any of the uninteresting
sites. As with spam filters, too many false classifications are pro-
hibitive for a practical system. In order to get an impression about
the consequences, we repeated our experiments with an OpenSSH
dataset where only 78 of all 775 sites were considered interest-

ing for the attacker. A tuned version of the MNB classifier which
was optimized for a minimum of false alarms caused a false alarm
for 1.4 % of the uninteresting instances (correctly not classifying
98.6 % of them). While the performance in terms of false alarms
may be acceptable, this comes at the cost of a considerable drop
in the accuracy for the interesting sites: only 40 % of the instances
of the interesting sites were classified correctly, which is far be-
low the accuracies we achieved when false alarms were neglected
(94.18 %, cf. Section 5.2.1). Such relatively low accuracy levels
have also been observed in related studies like [30, 8]. Accord-
ingly, the efficacy of our website fingerprinting technique in real
environments is still limited.

Although website fingerprinting is still not feasible under all
circumstances, we advise developers of privacy enhancing tech-
nologies to consider the impact and risk of traffic analysis attacks
against their systems. Accuracies will likely be further improved in
the future by applying more sophisticated pattern recognition and
data mining techniques. While already deployed multi-hop systems
demonstrate ways of protection, there is no protective single-hop
system around that is widely deployed yet.

17Please note that the term false positives is intentionally not used
here, as it is used to convey another meaning in classical data min-
ing.
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Figure 8: Aggregated packet size histograms for Tor before and after application of TF transformation

7. CONCLUSION
We have shown that a classical text mining classifier, Multino-

mial Naïve Bayes, can be used by an attacker to determine which
websites were downloaded over an encrypted connection. Our tech-
nique simply operates on the frequency distribution of IP packet
sizes, which is robust against small modifications of websites. Fur-
thermore, the packet size distribution can be easily recorded with
common network monitoring tools by a passive, external observer.
Within several experiments we have demonstrated that our method
is robust and succeeds to identify almost all websites from our sam-
ple, if one of the popular single-hop systems is employed. Without
system-specific tuning its effectivity is still limited against the con-
temporary multi-hop systems Tor and JonDonym, though, but they
still fail to offer perfect protection against this general attack. At-
tacks specifically tailored for these systems, e. g. by reproducing
Tor’s cells from the encrypted traffic, will likely offer higher accu-
racy.

Our classifier outperforms two similar methods, Jaccard’s clas-
sifier and a Naïve Bayes with kernel density estimation. Our re-
sults indicate that its increased performance is mainly due to the
normalisation of the packet size frequency vectors, which can be
considered a compromise between the properties of the aforemen-
tioned methods, i. e. neglecting occurrence frequencies altogether
or relying on absolute numbers of packets.

We have also discussed the efficacy of the attack in real world
environments, contributing two more findings: reproducing the re-
sults of related work, the achievable accuracy drops considerably
once the closed-world setup with its restricted set of websites is
left behind. In contrast to the findings for website fingerprint-
ing in anonymized NetFlows, our results indicate that enabling the
browser cache – which has been turned off in all previous website
fingerprinting studies for encrypted tunnels – affects accuracy only
moderately.

We haven’t seen a practical website fingerprinting attack for pri-
vacy enhancing techniques yet. Within controlled experimental en-
vironments, the accuracy of such attacks has steadily increased in
the last years, though. As future research efforts will likely over-
come the remaining limitations, the development and implementa-
tion of efficient countermeasures becomes an important task for the
PET community.

On a minor note, we showed how to apply classical text mining
techniques to a contemporary challenge in the privacy enhancing
technologies area. There are probably many more possible appli-
cations of interest for the security and privacy research community.
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