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Abstract

We present Mixminion, a message-based anonymous re-
mailer protocol with secure single-use reply blocks. Mix
nodes cannot distinguishMixminion forward messages from
reply messages, so forward and reply messages share the
same anonymity set. We add directory servers that allow
users to learn public keys and performance statistics of par-
ticipating remailers, and we describe nymservers that pro-
vide long-term pseudonyms using single-use reply blocks
as a primitive. Our design integrates link encryption be-
tween remailers to provide forward anonymity. Mixminion
works in a real-world Internet environment, requires little
synchronization or coordination between nodes, and pro-
tects against known anonymity-breaking attacks as well as
or better than other systems with similar design parameters.

1. Overview

Chaum first introduced anonymous remailers over 20
years ago [7]. The research community has since intro-
duced many new designs and proofs [1, 14, 16, 19, 28, 29],
and discovered a variety of new attacks [3, 5, 6, 9, 23, 35].
But because many of the newer designs require considerable
coordination, synchronization, bandwidth, or processing re-
sources, deployed remailers still use Cottrell’s Mixmaster
design from 1994 [8, 26]. Here we describe Mixminion, a
protocol for asynchronous, loosely federated remailers that
maintains Mixmaster’s flexibility while addressing the fol-
lowing flaws:

� Replies: Mixmaster does not support replies or anony-
mous recipients — people who want these functions
must use the older and less secure Cypherpunk Type
I remailer design [31], which is vulnerable to replay
attacks. We introduce a new primitive called a single-
use reply block (SURB), which makes replies as se-
cure as forward messages. Furthermore in Mixminion
the remailers themselves cannot distinguish reply mes-
sages from forward messages. We also describe how

to use these SURBs to securely build higher-level sys-
tems such as nymservers. By integrating reply capa-
bilities into Mixminion, we can finally retire the Type
I remailer network.

� Forward anonymity: Mixmaster uses SMTP (normal
mail) for transport. We use TLS over TCP for link
encryption between remailers and use ephemeral keys
to ensure forward anonymity for each message. Link
encryption also blocks many active and passive attacks
on the communication links.

� Replay prevention and key rotation: If an adversary
records the input and output batches of a mix and then
replays a message, that message’s decryption will re-
main the same. Thus an attacker can completely break
the security of the mix-net [7]. Mixmaster 2.0 offered
replay prevention by keeping a list of recent message
IDs — but because it expired old entries to keep the
list short, the adversary simply has to wait until the
mix has forgotten a message and replay it. Newer ver-
sions of Mixmaster keep a replay cache and also dis-
card messages more than a certain number of days old.
To block timestamp attacks, clients randomly add or
subtract a few days from the timestamp. But this ap-
proach may still be open to statistical attacks; see Sec-
tion 5.4. Mixminion instead counters replays by intro-
ducing key rotation: a message is addressed to a given
key, and after the key changes no messages to the old
key will be accepted, so the mix can forget about all
the messages addressed to old keys. The number of
IDs a node needs to remember between key rotations
is not too great a burden.

� Exit policies: Exit abuse is a serious barrier to wide-
scale remailer deployment: most Internet Service
Providers (ISPs) do not tolerate systems that poten-
tially deliver hate mail, etc. Mixminion provides a
consistent mechanism for each node to specify and ad-
vertise an exit policy. We further describe a protocol
which allows recipients to opt out of receiving mail
from remailers, but at the same time makes it difficult
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for an adversary to deny service to interested recipi-
ents.

� Integrated directory servers: Mixmaster uses sev-
eral ad hoc approaches to distribute information about
remailer availability, performance, and keys. But the
fact that users and remailers operate with different in-
formation introduces partitioning attacks. Mixminion
uses a small group of synchronized redundant direc-
tory servers to provide uniform information about the
network.

� Dummy traffic: Cottrell briefly mentions dummy
messages in [8], but they are not part of the specifica-
tion [26]. Mixminion uses a simple dummy policy for
now, but because we use our own transport, we support
many link padding and dummy traffic schemes.

We review mixes and mix-nets in Section 2, describe our
goals and assumptions in Section 3, and then address the
above list of improvements in Sections 4-7. We then sum-
marize how our design stands up to known attacks, and con-
clude with a list of open problems.

2. Background

Chaum introduced the concept of using relay servers, or
mixes, for anonymous communications [7]. Each mix has
a public key which senders use to encrypt messages to it.
The mix accumulates a batch of these encrypted messages,
decrypts them, and delivers them. Because a decrypted out-
put message looks nothing like the original encrypted input
message, and because the mix collects a batch of messages
and then sends out the decrypted messages in a rearranged
order, an observer cannot learn which incoming message
corresponds to which outgoing message. Chaum showed
the security of a mix against a passive adversary who eaves-
drops on all communications but is unable to observe the
reordering inside the mix. Pfitzmann fixed a weakness in
Chaum’s original scheme based on the properties of raw
RSA encryption [32].

However, trusting a single mix is dangerous: the mix it-
self could be controlled by an adversary. Therefore users
send their messages through a series of mixes: if some
of the mixes are honest (not run by the adversary), some
anonymity is preserved. In some schemes, such as Mix-
master [26] and Babel [14], the sender chooses the mixes
that make up her message’s path. Specifically, when Al-
ice wants to send an anonymous message to Bob through
mixesM1,M2, andM3, she encrypts her message succes-
sively with the public keys of the mixes in reverse order.
She includes routing information at each hop, so that each
mix Mi receives the address of Mi+1 along with the mes-
sage intended for Mi+1 (all encrypted under Mi’s public
key).

A mix network where Alice chooses her route freely
from all mixes is called a free-route network. Another ap-
proach is a cascade network, where senders choose from a
set of fixed paths through the mix-net. Cascades can provide
greater anonymity against an adversary who owns many
mixes [6], but they are also more vulnerable to blending
attacks such as trickle or flooding attacks [36]. Further, cas-
cade networks arguably have lower maximum anonymity
because the number of people Alice can hide among (her
anonymity set) is limited to the number of messages the
weakest node in her cascade can handle. In a free-route net-
work, larger anonymity sets are possible because no single
mix acts as a bottleneck: many mixes handle traffic in paral-
lel as messages traverse the network. Mix cascade research
includes real-time mixes [18] and web mixes [4].

More complex designs use zero-knowledge proofs and
stronger assumptions to guarantee delivery or to detect
and exclude misbehaving participants. These include flash
mixes [16], hybrid mixes [17, 29], and provable shuffles
[13, 28]. The properties of these designs are appealing, but
they are often impractical since they assume fairly strong
coordination and synchronization between the mixes and
impose a heavy computational and communication over-
head.

Some mix-net designs allow recipients to construct reply
blocks that allow others to send messages to them without
knowing their identities. A reply block contains only the
routing portion of a message; the actual contents are ap-
pended by the user who eventually sends a message to the
recipient. In this case the contents are effectively encrypted
at each step in the path rather than decrypted. The recipient
knows all the keys used in the reply block and can peel off
all the layers of encryption when the message arrives. Such
a design was first introduced by Chaum [7] and later ex-
tended in Babel [14]. However, Babel’s replies are indistin-
guishable from forward messages only by passive observers
— the mix nodes can still tell them apart. Babel’s reply ad-
dresses are also multiple-use, making them less secure than
forward messages due to replay vulnerabilities.

The first widespread public implementations of mixes
were produced by contributors to the Cypherpunks mail-
ing list. These “Type I” anonymous remailers were inspired
both by the problems surrounding the anon.penet.fi
service [15], and by theoretical work on mixes. Hughes
wrote the first Cypherpunk anonymous remailer [31];
Finney followed closely with a collection of scripts that
used Phil Zimmermann’s PGP to encrypt and decrypt re-
mailed messages. Later, Cottrell implemented the Mixmas-
ter system [8, 26], or “Type II” remailers, which added mes-
sage padding, message pools, and other mix features lack-
ing in the Cypherpunk remailers.
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2.1. Known attacks against mix-nets

Attacks against mix-nets aim to reduce the anonymity
of users by linking anonymous senders with the messages
they send, by linking anonymous recipients with the mes-
sages they receive, or by linking anonymous messages with
one another [35]. Attackers may trace messages through the
network by observing network traffic, compromising mixes,
compromising keys, delaying messages so they stand out
from other traffic, or altering messages in transit. They may
learn a given message’s destination by flooding the network
with messages, replaying multiple copies of a message, or
shaping traffic to isolate the target message from other un-
known traffic. Attackers may discourage users from using
honest mixes by making them unreliable. They may analyze
intercepted message text to look for commonalities between
otherwise unlinked senders. Finally, even if all other attacks
are foiled, a passive adversary can mount a long-term inter-
section attack to correlate the times at which senders and
receivers are active [6].

We discuss each of these attacks in more detail below,
along with the aspects of the Mixminion design that pro-
vide defense. We provide a summary of the attacks and our
defenses against them in Section 9.

3. Design goals and assumptions

Mixminion brings together the current best practical ap-
proaches for providing anonymity in a batching message-
based free-route mix environment. We do not aim to pro-
vide a low-latency connection-oriented service like Free-
dom [37] or Onion Routing [39]: while those designs are
more convenient for common activities like anonymous
web browsing, their low latency necessarily implies smaller
anonymity sets than with slower, message-based services.
Indeed, we intentionally restrict the set of options for users:
we provide only one cipher suite and we avoid extensions
that would help an adversary partition the anonymity set.
These assumptions lead to the following design goals:

First of all, the system must be simple to deploy. Past
systems have never found it easy to get a reliable group of
mix operators to run long-lived servers. Mixminion must
add as few technical barriers as possible. Thus our protocol
uses clock synchronization only to notice when a mix’s key
has expired, achieves acceptable performance on commod-
ity hardware, requires little coordination between servers,
and can automatically handle servers joining and leaving
the system.

Furthermore, the system must be simple for clients. Be-
cause software adoption has also been a barrier to past sys-
tems, we attempt to make the requirements for senders and
receivers as low as possible. Thus, only users who receive
anonymity from the system must run special software – that

is, users should be able to receive messages from anony-
mous senders and send messages to anonymous recipients
with a standard email client. (Non-anonymous recipients
receive messages via e-mail; non-anonymous senders us-
ing reply blocks send messages via e-mail gateways.) Users
must also be able to send and receive anonymous messages
using only commodity hardware. Finally, although users
with persistent network connections are necessarily more
resistant to intersection attacks than users with intermittent
connections, the system must offer the latter users as much
anonymity as possible.

We choose to drop packet-level compatibility with Mix-
master and the Cypherpunk remailer systems in order to
provide a simple extensible design. We can retain minimal
backwards compatibility by “remixing” Type II (Mixmas-
ter) messages inside Type III (Mixminion) messages, thus
increasing anonymity sets in the Type III network. (A Type
II message traveling between backward-compatible Type III
remailers is encrypted to the next remailer in the chain using
its Type III key, and sent as a Type III encrypted message.
The recipient decrypts it to reveal the Type II message.)

For our threat model, we assume a well-funded adver-
sary who can observe all traffic on the network; who can
generate, modify, delete, or delay traffic on the network;
who can operate mixes of its own; and who can compromise
some fraction of the mixes on the network. Our adversary
tries to link senders and receivers, to identify the sender or
receiver of a given message, or trace a sender forward (or a
receiver backward) to its messages.

The Mixminion design tries to make it as hard as possi-
ble for an adversary observing the network to gain any ad-
ditional information about communicating partners beyond
its a priori belief. It does this by providing very little in-
formation to outside observers, and intermediate nodes, to
avoid intersection attacks. In particular, even intermediary
nodes are not aware of the actual route length (which can
be as long as 32 hops) or their position in the network. Fur-
thermore, the processing for replies is exactly the same as
for normal messages, and it is therefore difficult to partition
the anonymity sets by distinguishing between them.

4. The Mixminion Mix-net Design

Mixminion uses a free-route mix-net just like Mixmaster
[26] and Babel [14]. Mixminion’s principal difference from
earlier mix-net designs is the mechanism it uses to support
reply messages with the same processing machinery as for-
ward messages, while at the same time resisting the attacks
described above.

Mixminion does not implement reusable reply blocks,
such as those in the Cypherpunk remailer and in Babel.
They are convenient, but they pose a security risk – by their
very nature they let people send multiple messages through
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them. An attacker can use this property to trace the recip-
ient’s path: if two incoming batches both include a mes-
sage to the same reply block, then the next hop must be in
the intersection of both outgoing batches. To prevent these
replays, Mixminion provides only single-use reply blocks
(SURBs). Since replies may be rare relative to forward mes-
sages, and thus much easier to trace, the Mixminion proto-
col makes reply messages indistinguishable from forward
messages even for the mix nodes. Thus forward and reply
messages can share the same anonymity set.1

Mixminion’s reply model requires anonymous recipients
to keep one secret for each nym they maintain. The fi-
nal header of the SURB includes a seed (symmetrically en-
crypted to that nym’s secret), from which the recipient can
derive all the secrets needed to strip the layers of encryption
from the received message. The recipient keeps a separate
secret for each nym in order to block attacks to link the
nyms. For example, if Alice is talking to Bob and Charlie
and guesses they are the same person, she might reply to
Bob’s mail using Charlie’s reply block; if Bob responds as
normal, her guess would be confirmed.

The rest of this section describes the mechanism for se-
cure replies, its integration with the normal sender anony-
mous message delivery, and how we defeat tagging-related
attacks.

4.1. Recipient anonymity and indistinguishable
replies

Mixminion allows Alice to send messages to Bob in one
of three ways:

1. Forward messages where only Alice remains anony-
mous.

2. Direct Reply messages where only Bob remains
anonymous.

3. Anonymized Reply messages where Alice and Bob
remain anonymous.

The fact that forward messages are indistinguishable
from replies, however, makes it more difficult to prevent
tagging attacks. Since the author of a SURB cannot pre-
dict the message that will be attached to it, a hash of the
entire message cannot be included in the SURB. Therefore,
since we choose to make forward messages and replies in-
distinguishable, we cannot include hashes for forward mes-
sages either. Tagging attacks, and our approach to prevent-
ing them, are discussed in more detail in Section 4.2.

Messages are composed of a header section and a pay-
load. We divide a message’s path into two legs, and split

1Note that replies are still weaker than forward messages: an adversary
can successively force intermediate mixes to reveal the next hop of the
reply block until its originator is reached.
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the header section correspondingly into a main header and a
secondary header. Each header is composed of up to 16 sub-
headers, one for each hop along the path. Each subheader
contains a hash of the remainder of its header as seen by
that mix, so we can do integrity-checking of the path (but
not the payload) within each leg. Each subheader also con-
tains a master secret, used to derive a symmetric key for
decrypting the rest of the message. To make sure that the
hash matches even though each hop must repad the header
to maintain constant message length, we need to add pre-
dictable padding to the end of the header: the mix appends
an appropriate number of zero bits to the header after mes-
sage decryption, and decrypts those also. A security proof
for a simplified version of this approach is given in [25].

Each subheader also includes the address of the next
node to which the message should be forwarded, along with
its expected signature (identity) key fingerprint — the mix
refuses to deliver the message until the next hop has proved
its identity.

For forward messages, Alice provides both legs. For
anonymous replies, Alice uses Bob’s reply block as the sec-
ond leg, and generates her own path for the first leg. To send
a direct reply, Alice can use an empty second leg, or send
the reply block and message to a mix that can wrap them
for her. Figure 1 illustrates the three options.

When Alice creates her message, she encrypts the sec-
ondary header with a hash of her payload (as well as the
usual layered onion encryptions). Alice’s message traverses
the mix-net as normal (every hop pulls off a layer, verifies
the hash of the current header, and puts some junk at the
end of the header), until it gets to a hop that is marked as
a crossover point. This crossover point performs a “swap”
operation: it decrypts the secondary header with the hash
of the current payload, and then swaps the two headers.
The swap operation is detailed in Figure 2 — specifically,
the normal operations done at every hop are those above
the dotted line, and the operations performed only by the
crossover point are those below the dotted line. We use
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a keyed encryption primitive, labeled “LBC” (for Large-
Block Cipher), to encrypt the second header and the pay-
load. This primitive needs to have certain properties:

� The LBC operation must preserve length.

� Without knowing the key, it should be impossible to
recognize the decryption of a modified block, or to
predict the effect of a modification on the decrypted
block.

� The decryption and encryption operations should be
equally secure when used for encryption.

To fulfill the above requirements we use a variable-
length block cipher adapted to the length of the payload —
that is, a cipher that acts as a permutation on a block the size
of its input (a header or the payload). One candidate is LI-
ONESS [2]. The cryptographic property required is that of
a super-pseudo-random permutation (a.k.a. strong pseudo-
random permutation) or SPRP [20].2 Thus if any bit of the
encrypted material is changed, the decryption will look like
random bits. An SPRP is also equally secure in the encryp-
tion and decryption directions. In the following section, we
describe how this approach helps protect against tagging.

4.2 Defenses against tagging attacks

To motivate the Mixminion design, we describe an at-
tack that works against many mix-net protocols, including
Mixmaster and Babel.

A tagging attack is an active attack in which a message
is modified by altering part of it (for example by flipping

2The weaker PRP property may be sufficient, given that preventing re-
plays limits the number of oracle queries to 1; this will need further analy-
sis. In that case the simpler BEAR construction [2] could be used instead
of LIONESS.

bits) so that it can be recognized later in the path. A later
mix controlled by the attacker can recognize tagged mes-
sages because the header or the body does not conform to
the expected format when decrypted. Also, the final recip-
ient can recognize a tagged message for which the payload
has been altered. Thus, an attacker can use tagging to trace
a message from the point at which it is tagged to the point
at which the corrupted output appears.

Checking the integrity of hop headers individually is not
sufficient to prevent tagging attacks. For example, in Mix-
master each hop header contains a hash of the other fields in
that header [26]. Each mix in the path checks the integrity
of its own header and drops the message immediately if it
has been altered. However, an attacking mix can still alter a
header that will be decrypted only after several more hops,
and so tagging attacks are still possible.

The most straightforward way to prevent tagging attacks
is to verify the integrity of the whole message at every hop.
For forward messages, then, the padding added to a mes-
sage must be derived deterministically, so that it is possi-
ble to calculate authentication tags for the whole message
at each hop. But the situation becomes more complicated
when reply messages are introduced – the payload and the
reply block are created by different users. It is impossi-
ble for the creator of the SURB to include in the header a
checksum of a message he does not yet know. Therefore
conventional techniques such as semantically secure or ran-
domized encryption, that make sure an adversary does not
gain any information by sending malformed messages to the
mix (since the mix acts as a decryption oracle), cannot be
used.

Mixminion uses a hybrid strategy to protect against such
attacks: we use cryptographic checksums to protect the
headers, and the “swap” step described above insures that
the addressing information contained in the headers is de-
stroyed if the payload is modified by an adversary.

If the Mixminion design did not require the crossover
point, an adversary could mount a tagging attack by mod-
ifying the payload of a forward message as it leaves Alice
and recognizing it later when it reaches Bob. For exam-
ple, if our encryption mechanism were an ordinary counter-
mode cipher, an adversary might alter a specific byte in the
payload of a message entering the mix-net. Since many
of the outgoing messages will be in part predictable (ei-
ther entirely plaintext, or with predictable PGP header ma-
terial), the adversary could later observe messages exiting
the mix-net and look for payloads that have a correspond-
ing anomaly at that byte. Other cipher modes such as Cipher
Block Chaining (CBC) present comparable problems, since
whole blocks would look like random bytes instead of the
normal payload.

We use a large-block cipher as described in the previous
section to minimize the amount of information an adversary
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can learn from tagging. If he tags a message leaving Alice,
the payload will be entirely random when it reaches Bob.
Thus, an adversary who tags a message can at worst turn the
corresponding payload into trash (pseudorandom bit strings
entirely unpredictable to the attacker).

We briefly considered introducing cover-trash, dummy
messages designed to look like tagged messages, to frustrate
these tagging attacks; but that problem is as complex as the
dummy traffic problem [5]. Instead, we use the “swap” step
at the crossover point to prevent the attacker from learning
information from tagging attacks. The second header of the
message, which contains the path to the final destination of
the forward path, is encrypted by the sender with the hash of
the payload that is to arrive at the mix. The mix then needs
to perform the decryption and swap the first header for the
second one. Our security argument has three cases:

� Forward messages: if the message is tagged during the
first leg, the second header is unrecoverable, and so the
adversary cannot learn the intended destination of the
message. If the message is tagged during the second
leg, then the first leg has already provided anonymity,
and so the adversary cannot learn the sender.

� Direct reply messages: since the decryption algorithm
provides secrecy equivalent to encryption, the effect is
similar to encrypting the payload at each step along a
reply block. Only the recipient can learn, after peeling
off all layers, whether the message has been tagged.
Thus tagging attacks are useless against direct reply
messages.

� Anonymized reply messages: as with forward mes-
sages, if the first leg is tagged the second header is un-
recoverable — so an adversary will never learn that the
message was addressed to a reply block. And as with
direct reply messages, only the recipient can learn if
the second leg is tagged.

While direct reply messages do not need a crossover
point in the path (the adversary can never observe his tag),
forward messages still need a crossover point to prevent
end-to-end tagging. But since the first leg either provides
sufficient anonymity or destroys the information about the
second leg, the second leg in a forward message can be
short. At the extreme, the first hop in the second header
could directly specify the message recipient. However, the
choice of crossover point can still reveal information about
the intended recipient (imagine that some mixes only al-
low outgoing mail to local addresses; if such a node gets a
crossover message that has been trashed, it might guess that
the recipient is one of the local addresses), and so we rec-
ommend that the second leg be at least a few hops long. We
use a path length of 4 hops per leg, but with only 2 hops in
the second leg of a forward message.

It is worth noting that while semantically secure encryp-
tion cannot be used directly to solve the problem of tagging
attacks in Mixminion, the structure of the operations per-
formed on the message as it travels through the network
is similar to the Luby-Rackoff [20] structure. In particular
the fact that the header depends on the body and vice versa
makes sure that if the message is tagged in any way it will
become entirely different from what was intended, and its
contents will provide no information at all to an attacker.
Mixminion is the first system, to our knowledge, to achieve
this property by distributing the operation of a cipher across
many nodes of a mix network.

No mix except the crossover point can get any informa-
tion distinguishing forward messages from replies. While
the crossover point cannot be certain whether the message
that it is processing is a forward message or a reply, it does
gain partial information because crossover points are less
frequent on forward paths, and therefore a message which
is crossing-over is more likely to be a reply message.

4.3. Multiple-message tagging attacks

The above design is still vulnerable to a subtle and dan-
gerous attack. If Alice sends a group of messages along the
same path, the adversary can tag some of those message as
they leave Alice, recognize the pattern (number and timing
of tagged and untagged messages) at the crossover point,
and observe where the untagged ones go. With some as-
sumptions about our adversary, we can reduce this attack to
a traffic confirmation attack we’re already willing to accept:
when Alice sends a bunch of messages, the adversary can
count them and look for the pattern later. He can also drop
some of them and look for resulting patterns.

The adversary can only recognize a tag if he happens
to own the crossover point that Alice chooses. Therefore,
Alice picks k crossover points for her messages;3 to match
a tag signature with certainty, an adversary would have to
own all k crossover points. (And even then, it seems harder
as the subsets of her messages would overlap with subsets
of messages from other senders.)

The key here is that when the adversary doesn’t own a
given crossover point, tagging messages destined for that
crossover is equivalent to dropping them. The crossover
point in question simply doesn’t deliver the message to the
second leg. Therefore, if the adversary doesn’t own most
of the crossover points that Alice chooses, a successful
multiple-message tagging attack seems infeasible. We leave
a security analysis of the multiple-paths idea to future work,
but see Section 8.

3We can prevent the adversary from using divide-and-conquer on Al-
ice’s groupings if Alice uses a hybrid path starting with a short cascade
— so even if the adversary tags a subset of the messages he doesn’t know
(unless he owns the whole cascade) the groupings of tagged messages.
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5. Other design decisions

5.1. Forward secure link encryption and its benefits

Unlike remailer Types I and II that used SMTP [33] (or-
dinary Internet e-mail) as their underlying transport mech-
anism, Mixminion clients and nodes communicate using
a forward secure encrypted channel based on TLS [10].
TLS allows the establishment of an encrypted tunnel us-
ing ephemeral Diffie-Hellman key negotiation. In order to
guarantee that the receiving end is the one intended by the
creator of the anonymous message, the receiving node signs
the ephemeral key. As soon as a session key has been es-
tablished, the parties destroy their Diffie-Hellman keys and
begin sending messages through the tunnel. After each mes-
sage, the parties perform a standard key update operation to
generate a fresh session key and delete the old key mate-
rial. Key updates don’t require any asymmetric encryption
techniques, and so are relatively fast.

The purpose of link encryption is to provide forward se-
crecy: once the ephemeral link keys have been deleted, not
even the nodes that exchange messages can decrypt or rec-
ognize messages that might have been intercepted on the
links. This makes it impossible to comply with demands
for decryption of past traffic that might be served in some
jurisdictions, and limits the impact of server compromise on
the anonymity of messages already delivered. Even if an at-
tacker manages to get hold of the session key at a particular
point he would have to observe all subsequent traffic to be
able to update his key appropriately.

Additionally link encryption makes active and passive
attacks on the network links more difficult. Since a mes-
sage tells each mix the identity of its successor in the path,
it is difficult for an attacker to mount a man-in-the-middle
attack to modify messages, inject messages to a node as
if they were part of the normal communications, or delete
messages. An additional heartbeat signal in the TLS tunnel
could be used to complicate message delaying attacks.

The encrypted channel offers only limited protection
against traffic analysis. Encrypted links between honest
nodes prevent an adversary from recognizing even his own
messages, but without link padding, he can still measure
how much traffic is being transmitted.

As a fringe benefit, using a separate link protocol makes
it easier to deploy relay-only mixes — such nodes simply
omit SMTP support, as the next section discusses.

5.2. Message types and delivery modules

Once a Mixminion packet reaches the final mix in its
path, it must either be delivered to its intended recipient,
dropped if it is an intra-network dummy message, or pro-
cessed further if it is a remixed Type II packet. In order

to support different kinds of delivery, the header includes a
type code for the action to be taken to deliver the message.
A few types — such as ‘dummy’, ‘SMTP’, and ‘local deliv-
ery’ — are specified as a part of the Mixminion standard.
Others may be added by future extensions to implement
abuse-resistant exit policies (see Section 5.3), to adminis-
ter nymservers (see Section 7), to publish anonymously to
Usenet, to relay messages to older remailers, or to support
other protocols.

Nearly all delivery methods require additional informa-
tion beyond the message type and its payload. The SMTP
module, for example, requires a mailbox.4 This information
is placed in a variable-length annex to the final subheader.

The types each mix supports are described in a capabil-
ity block, which also includes the mix’s address, long-term
(signing) public key, short-term (message decryption) pub-
lic key, remixing capability, and batching strategy. Mixes
sign these capability blocks and publish them on directory
servers (see Section 6). Clients download this information
from the directory servers.

The possibility of multiple delivery methods doesn’t
come free: their presence may fragment the anonymity set.
For example, if there were five ways to send an SMTP mes-
sage to Bob, an attacker could partition Bob’s incoming
mail by guessing that one of those ways is Alice’s favorite.
An active attacker could even lure users into using a com-
promised exit node by advertising that node as supporting
a rare but desirable delivery method. We believe these at-
tacks do not provide an argument against extensibility per
se, but rather argue against the proliferation of redundant
extensions, and against the use of rare extensions.

5.3. Exit policies and abuse

One important entry in a node’s capability block is its
exit policy, that describes to which addresses and by which
methods a mix node is prepared to deliver messages. Exit
abuse is a serious barrier to wide-scale remailer deployment
— rare indeed is the network administrator tolerant of ma-
chines that potentially deliver hate mail.

On one end of the spectrum are open exit nodes that will
deliver anywhere; on the other end are middleman nodes
that only relay traffic to other remailer nodes, and private
exit nodes that only deliver locally. More generally, nodes
can set individual exit policies to declare which traffic they
will deliver: some may allow traffic only for local users;
others may require other forms of traffic authentication [38].

Preventing abuse of open exit nodes is an unsolved prob-
lem. If receiving mail is opt-in, an abuser can forge an opt-
in request from his victim. Indeed, requiring recipients to

4A mailbox is the canonical form of the “user@domain” part of an
e-mail address. Mixminion uses only mailboxes in the protocol, because
the other parts of an e-mail address could differ among senders who obtain
an address from different sources, thus leading to smaller anonymity sets.
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declare their interest in receiving anonymous mail is risky
— human rights activists in Guatemala cannot both sign up
to receive anonymous mail and also retain plausible denia-
bility. Similarly, if receiving mail is opt-out, an abuser can
deny service by forging an opt-out request from a legitimate
user. We use a compromise, where all users are assumed
to want to receive mail, but each Mixminion message ar-
rives with instructions on how to opt out. Specifically, the
message includes a secret that must be used to authorize
the opt-out. Thus adversaries who cannot read the victim’s
mail cannot forge an opt-out request. (We believe that re-
stricting ourselves to such adversaries is reasonable. After
all, adversaries strong enough to read the victim’s mail can
probably deny service to him in some other way. Users may
also avoid this attack by running their own ‘delivery-only’
nodes, which would amount to an implicit opt-in.)

Of course, a mixture of open and restricted exit nodes
will allow the most flexibility for volunteers running
servers. But while a large number of middleman nodes is
useful to provide a large and robust network, a small num-
ber of exit nodes still simplifies traffic analysis. In these at-
tacks, the adversary observes both a suspected user and the
network’s exit nodes and looks for timing or packet correla-
tions. The fewer exit nodes in the system, the easier it is for
an attacker to observe them all. Thus, the number of avail-
able open exit nodes remains a limiting security parameter
for the remailer network.

5.4. Replay prevention,message expiration, and key
rotation

Mixmaster offers rudimentary replay prevention by
keeping a list of recent message IDs. To keep the list
from getting too large, it expires entries after a server-
configurable amount of time. But if an adversary records
the input and output batches of a mix and then replays a
message after the mix has forgotten about it, the message’s
decryption will be exactly the same. Thus, Mixmaster does
not provide the forward anonymity that we want.

Chaum first observed this attack in [7], but his solution
(which is proposed again in Babel5) — to include in each
message a timestamp that describes when that message is
valid — also has problems. Specifically, it introduces a new
class of partitioning attacks, where the adversary can distin-
guish and track messages based on timestamps. If messages
have short lifetimes, then some legitimate messages will ex-
pire before they can be delivered. But if messages have long
lifetimes, then messages near their expiration date will be

5Actually, Babel is vulnerable to a much more direct timestamp attack:
each layer of the onion includes “the number of seconds elapsed since Jan-
uary 1, 1970 GMT, to the moment of message composition by the sender.”
Few people will be composing a message on a given second, so an adver-
sary owning a mix at the beginning of the path and another at the end could
trivially recognize a message.

rare, and an adversary can exploit this fact by intentionally
delaying a message until near its expiration date. If he owns
a mix later in the path he can recognize the message by its
unusually late expiration date.

One way of addressing this partitioning attack is to add
dummy traffic so that it is less rare for messages to arrive
near their expiration date, but dummy traffic is still not well-
understood. Another approach would be to add random val-
ues to the expiration date of each mix in the path, so an ad-
versary delaying a message at one mix cannot expect that it
is now near to expiring elsewhere in the path; but this seems
open to statistical attacks.

We use a compromise solution that still provides forward
anonymity. Messages don’t contain any timestamp or expi-
ration information. As in Mixmaster, each mix keeps hashes
of the headers of all messages it has processed; but unlike
Mixmaster, a mix only discards these hashes when it ro-
tates its public key. Mixes should choose key rotation fre-
quency based on their security goals and on the number of
hashes they are willing to store, and advertise their key rota-
tion schedules along with their public key information. (See
Section 6.)

Note that this solution does not entirely solve the par-
titioning problem — near the time of a key rotation, the
anonymity set of messages will be divided into those
senders who knew about the key rotation and used the new
key, and those who did not. Also note that while key rota-
tion and link encryption (see Section 5.1) both provide for-
ward security, their protection is not redundant. With only
link encryption, an adversary running one mix could com-
promise another and use its private key to decrypt messages
previously sent between them. Key rotation limits the win-
dow of opportunity for this attack.

6. Directory Servers

The Mixmaster protocol does not specify a means for
clients to learn the locations, keys, capabilities, or perfor-
mance statistics of mixes. Several ad hoc schemes have
grown to fill that void [30], but as we explain below, it is
important that all clients learn this information in the same
way. (Omitting directory servers is not an option: without
timely information, clients cannot respond to changes in the
set of mixes, or to changes in mix keys.) Here we describe
Mixminion directory servers and examine the anonymity
risks of such information services.

In Mixminion, a group of redundant directory servers
provide clients information about nodes’ current keys, ca-
pabilities, and state. These directory servers must be syn-
chronized and redundant: we lose security if clients have
different information about network topology and node reli-
ability. An adversary who controls a directory server could
track certain clients by providing different information —
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perhaps by listing only mixes under its control, or by in-
forming only certain clients about a given mix.

Moreover, an adversary without control of a directory
server can still exploit differences among client knowledge.
If Eve knows that mixM is listed on server D1 but not on
D2, she can use this knowledge to link traffic through M
to clients who have queried D1. Eve can also distinguish
traffic based on any differences between clients who use di-
rectory servers and those who don’t, between clients with
up-to-date listings and those with old listings, and (if the di-
rectory is large and so is given out in pieces) between clients
who have different subsets of the directory.

So it is not merely a matter of convenience for clients
to retrieve up-to-date mix information. We must specify a
directory service as a part of our standard. Thus Mixmin-
ion provides protocols for mixes to advertise their capability
certificates to directory servers, and for clients to download
complete directories.6 Directory servers work together to
ensure correct and complete data by successively signing
certificate bundles, so users can be sure that a given mix
certificate has been seen by a threshold of directory servers.
While we require stronger synchronization and trust for the
directory servers, we believe this is realistic because there
will be far fewer of them than mix nodes, and they will be
much more static.

But even if client knowledge is uniform, an attacker can
mount a trickle attack by delaying messages from Alice
at a compromised node until the directory servers remove
some mix M from their listings — he can then release the
delayed messages and guess that any messages still using
M are likely to be from Alice. An adversary controlling
many nodes can launch this attack effectively. Thus clients
should download new information regularly, but wait for a
given time threshold (say, an hour) before using any newly-
published nodes. Dummy traffic to old nodes may also help
thwart trickle attacks.

Directory servers compile node availability and perfor-
mance information by sending traffic through mixes in their
directories. This is currently similar to the current ping
servers [30], but in the future we can investigate integrat-
ing more complex and attack-resistant reputation metrics.
But even this reputation information introduces vulnerabil-
ities: for example, an adversary trying to do traffic analy-
sis can get more traffic by gaining a high reputation [11].
We can defend against these attacks by building paths from
a suitably large pool of nodes [12] to bound the probabil-
ity that an adversary will control an entire path, but there

6We recommend against retrieving anything less than a complete direc-
tory. Even if clients use the mix-net to anonymously retrieve a random sub-
set of the directory, an adversary observing the directory servers and given
two hops in a message’s path can take the intersection over recently down-
loaded directory subsets to guess the remaining hops in the path. Private
Information Retrieval [21] may down the road allow clients to efficiently,
securely, and privately download a subset of the directory.

will always be a tension between giving clients accurate and
timely information and preventing adversaries from exploit-
ing the directory servers to manipulate client behavior.

7. Nym management and single-use reply
blocks

Current nymservers, such as nym.alias.net [22],
maintain a set of hmailbox; reply blocki pairs to allow users
to receive mail without revealing their identities. When mail
arrives to <bob@nym.alias.net>, the nymserver at-
taches the payload to the associated reply block and sends
it off into the mix-net. Because these nymservers use the
Type I remailer network, these reply blocks are persistent or
long-lived nyms — the mix network does not drop replayed
messages, so the reply blocks can be used again and again.
Reply block management is much simpler in this model be-
cause users only need to replace a reply block when one of
the nodes it uses stops working.

The Mixminion design protects against replay attacks by
dropping messages with repeated headers — so its reply
blocks are necessarily single-use. Nonetheless, there are
still a number of approaches for building nymservers from
single-use reply blocks.

In the first approach, nymservers keep a stock of reply
blocks for each mailbox, and use a new reply block �i for
each incoming message. Suppose Alice wants to register a
pseudonym � with signature and verification keys (S�; V�)
with the Nym server in order to receive messages from Bob.
In this case, the parties communicate as follows:

�! Nym : fRegister; �; V�; �1 : : : �ngS�

B ! Nym : �;M

Nym ! �i :M

(1)

As long as the owner of the pseudonym keeps the
nymserver well-stocked, no messages will be lost. But it
is hard for the user to know how many new reply blocks to
send; indeed, under this approach, an attacker can deny ser-
vice by flooding the mailbox to exhaust the available reply
blocks and block further messages from getting delivered.

A more robust design uses a protocol inspired by e-mail
retrieval protocols such as POP [27]: messages arrive and
queue at the nymserver, and the user periodically checks
the status of his mail and sends a sufficient batch of reply
blocks so the nymserver can deliver that mail. In this case,
the parties communicate as follows:

�! Nym : fRegister; �; V�gS�

B ! Nym : �;M

�! Nym : fQuery; �; �1 : : : �ngS�

Nym ! �i : M

(2)
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In this case, the nymserver doesn’t need to store any re-
ply blocks. The above flooding attack still works, but now
it is exactly like flooding a normal POP mailbox, and the
usual techniques (such as allowing the user to delete mails
at the server or specify which mails to download and let the
others expire) work fine. The user can send a set of indices
to the server after successfully receiving some messages, to
indicate that they can now be deleted.

Of course, there are different legal and security impli-
cations for the two designs. In the first design, no mail is
stored on the server, but it must keep valid reply blocks on
hand. The second case is in some sense more secure be-
cause the server need not store any reply blocks, but it also
creates more liability because the server keeps mail for each
recipient until it is retrieved. The owner of the pseudonym
could provide a public key that the nymserver uses to imme-
diately encrypt all incoming messages to limit the amount
of time the nymserver keeps plaintext messages.

The best implementation depends on the situations and
preferences of the volunteers running the nymservers. We
hope that as we gain more experience with their needs and
the needs of their users, we will converge on a suitable
model.

8. Maintaining anonymity sets

8.1. Batching Strategy

Low-latency systems like Onion Routing aim to provide
anonymity against an adversary who is not watching both
Alice and Bob [39]. If the adversary watches both, he can
for instance count packets and observe packet timing to
become confident that they are communicating. Because
Mixminion aims to defeat even a global passive adversary,
we must address this end-to-end timing vulnerability.

Further, because our adversary can send and delay mes-
sages, he can manipulate the batch of messages entering a
mix so the only message unknown to him in the batch is
the target message. This approach is known as the blending
attack because the adversary blends his own recognizable
messages with the honest messages in the batch [36]. By
repeatedly attacking each mix in the path, the adversary will
link Alice and Bob.

Mixminion nodes use a timed dynamic-pool batching
strategy [36] adapted from Mixmaster. Rather than sim-
ply processing each message as soon as it arrives, each mix
keeps a pool of messages. New messages arrive, are de-
crypted, and enter the pool. The mix fires every t seconds,
but only if the pool contains at least a threshold of messages.
If the mix fires, it randomly chooses a constant fraction of
the pool messages (say, 60%) to deliver.

Since the number of messages delivered each round is
based on the rate of incoming messages, an attacker cannot

overflow the pool with sustained flooding. These mixes also
increase the cost of the blending attack: while the number
of messages coming out increases as the rate of incoming
messages increases, the chance that any given message will
leave the pool remains constant. Thus it is impossible to ar-
range to completely flush the mix with high probability in
one flush. An adversary is forced to spend multiple inter-
vals (and thus delay other messages for considerable time)
first to flush the original honest messages from the mix, and
again to flush the target message from the mix. This delay
can be noticed by the other mixes, because they communi-
cate over TLS with a heartbeat to detect delays.

This batching strategy also increases the cost of inter-
section attacks by providing large anonymity sets for each
message in the network. Because a message could plausibly
have been held in a pool for several rounds at each mix, the
set of possible senders when Bob receives the target mes-
sage is large.

8.2. Dummy policy

Dummy traffic (sending extra messages that are not ac-
tually meant to be read or used, to confuse the adversary) is
an old approach to improving anonymity, but its efficacy is
still not well analyzed.

One use for dummies is to weaken the intersection at-
tack, perhaps by letting mixes introduce dummies addressed
to actual users. But to do this, each mix must know all the
users in the system: if a mix only delivers dummies to a
subset of the users, an adversary can distinguish with bet-
ter than even probability between a dummy and a legitimate
message. While there is some initial research on the sub-
ject [5], we currently know no practical way to use dum-
mies to provably help against the intersection attack. Thus
Mixminion does not at present incorporate dummies to or
from users.

Instead, we incorporate mix-to-mix dummies to weaken
the blending attack. As described in Section 8.1 above, our
timed dynamic-pool batching strategy already increases the
cost of the blending attack because the adversary needs to
keep flushing the mix until all honest messages are out —
but once the adversary has done so, he can be certain that
no honest messages remain. In the second phase of the at-
tack, he again needs to flush until the target message comes
out, but once it does, he can be certain of recognizing it.
To prevent this, Mixminion employs the following dummy
policy, as suggested in [36]: each time the mix fires, it also
sends out a number of dummies chosen from a geometric
distribution. These dummies travel a number of hops cho-
sen uniformly between 1 and 4. The blending attack is now
harder — the adversary can no longer single out the target
message in the outgoing batch, and so must track each of
the dummies along with the original target message.
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During normal traffic, these dummies have little effect
on anonymity. They aim to protect anonymity in times of
low traffic — either when there are actually few messages
going through the mix, or when most messages are created
by the adversary.

8.3. Choosing paths when transmitting many mes-
sages

When Alice (the owner of a pseudonym) downloads her
mail from a nymserver, she will likely receive many sep-
arate messages. Similarly, if Alice uses Mixminion as a
transport layer for higher-level applications, sending a large
file means sending many Mixminion messages, because of
their fixed size. Conventional wisdom suggests that she
should pick a different path for every message, but an ad-
versary that owns all the nodes in any of the paths could
learn her identity — without any work at all. Even an ad-
versary owning a small fraction of the network can perform
this attack, since each Mixminion payload is small.

Alice thus seems most likely to maintain her unlinkabil-
ity by sending all the messages over the same path. On the
other hand, a passive adversary can watch the flood of mes-
sages traverse that path.

A compromise approach is to pick a small number of
paths and use them together. By sending out the messages
over time rather than all at once, and assuming more people
than just Bob are receiving many messages, the pool mixes
will create a large anonymity set of possible senders. How-
ever, a complete solution to the intersection attack remains
an open problem.

9. Attacks and Defenses

Below we summarize a variety of attacks and how well
our design withstands them.

1. Mix attacks

� Compromise a mix. Messages traverse multiple
mixes, so compromising a single mix, even a
crossover point, does not gain much.

� Compromise a mix’s private key. Again, control-
ling a single mix is of limited use. Further, peri-
odic mix key rotation limits the window of time
in which to attack the next mix in the target mes-
sage’s path.

� Replaying messages. Mixes remember header
cryptographic checksums of previously seen
messages; after key rotation these old headers
can no longer be decrypted.

� Delaying messages. The adversary can delay
messages and release them when certain network
parameters (eg traffic volume) are different. The
efficacy of this attack is poorly understood, but
it may well be quite damaging [36]. Imposing a
deadline on transmission at each hop may help
[11].

� Dropping messages. The adversary can drop
messages with the hope that users will notice and
resend. If the user must resend, she should use
the same path, to prevent the adversary from forc-
ing her onto an adversary-controlled path (see
Section 8.3).

� Tagging messages. Mixes detect modified head-
ers immediately using checksums. The payload
can still be tagged, but the “swap” step along with
SPRP encryption from Section 4.1 provide pro-
tection.

� N�1 attack (trickle, flooding) The “timed
dynamic-pool” batching strategy from Section
8.1, along with our dummy policy, limits the ef-
fectiveness of these blending attacks.

2. Passive attacks

� Intersection attack. Our dynamic-pool batching
strategy from Section 8.1 spreads out the mes-
sages over time, increasing the set of possible
senders for a given received message and thus in-
creasing the cost of an intersection attack. How-
ever, a complete solution remains an open prob-
lem [5].

� Textual analysis. Mixminion provides location
anonymity, not data anonymity. Users are re-
sponsible for making sure their messages do not
reveal identifying information. Such attacks are
practical, and therefore a real threat, as docu-
mented in [34].

3. Exit attacks

� Partition traffic by delivery method. We en-
courage recipients to use one of only a few de-
livery methods, so we can maintain sufficient
anonymity sets for each.

� Partition traffic by exit capabilities. Delivery
methods should be standardized; users should be
suspicious of delivery methods only offered by a
few exit nodes.

� Use the mix network to send hate mail, etc. We
allow recipients to opt out of receiving further
mail. Still, we must have enough nodes that
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can withstand complaints stemming from abusive
email, or it will be too easy for an adversary to
monitor all exit nodes in the network.

4. Directory attacks

� Compromise a directory server. Identical di-
rectory listings are served by a small group of
servers and signed by all. We assume that a
threshold of these directory servers will remain
honest.

� Exploit differences in client directory knowledge.
By only updating directory information nightly,
by designing client software to pull updates as
soon as possible after their release, and by ensur-
ing that clients have the entire directory, we can
limit this attack.

� Delay mix messages until directory information
changes. The fact that clients delay using new
information, along with dummy traffic sent to de-
listed destinations and expired keys, should mit-
igate this attack. Again, imposing a deadline on
transmission at each hop may help more [11].

� Sign somebody else up as a mix. Signatures
on capability blocks prevent others from forging
blocks to the directory servers.

� Flood the directories with nonfunctional mix en-
tries; run highly reliable mixes to gain traffic for
analysis; attack honest mixes to encourage users
to start using the dishonest ones. Availability and
reliability statistics should mitigate some of these
problems, but they introduce problems of their
own. They are an area of active research [11, 12].

10. Future Directions and Open Problems

This design document represents the first step in peer re-
view of the Type III remailer protocol. Many of the ideas,
ranging from the core design to peripheral design choices,
need more attention:

� We need more research on batching strategies that re-
sist blending attacks [36] as well as intersection at-
tacks on asynchronous free routes [6]. In particular
the anonymity they provide during normal operation
or under attack must be balanced with other properties
such as latency and reliability.

� We need a more thorough investigation of multiple-
message tagging attacks and an analysis of how to
safely choose paths when sending many messages.
When a message to be sent is larger than the Mixmin-
ion payload size, we need a strategy to fragment it and

reconstruct it at the recipient’s end. We can use retrans-
mission strategies or forward error correction codes to
recover if some messages are lost.

� Can we keep the indistinguishability of forward mes-
sages and replies using a simpler design? We need
to prove that our design provides bit-wise unlinkabil-
ity between the input bit-patterns of messages and the
messages coming out of the network.

� Currently, reply messages can be distinguished from
plaintext forward messages at the exit nodes: the for-
mer exit as encrypted data, and the latter do not. We
prevent further partitioning by arranging encrypted
forward messages to blend in with the reply messages,
but even this degree of distinguishability is unsettling.
Finding further means to mitigate this problem would
be helpful.

� A synchronous batching approach, where messages
have deadlines for each hop, may allow easier
anonymity analysis, and may provide much larger
anonymity sets because all messages entering the mix-
net in a given time interval are mixed together. A
cascade is the simplest example of this approach, but
we should consider mechanisms for free-route syn-
chronous mixes. We could greatly improve our protec-
tion against message delaying attacks and the partition-
ing attacks discussed in Section 5.4. On the other hand,
the costs are greater network synchronization and over-
head, and less mix operator flexibility.

� We need stronger intuition about how to use dummy
messages. Such messages can be inserted between
nodes as link padding, or as actual multi-hop Mixmin-
ion messages. We must develop a more analytically
justified approach to determine which parties send
dummy messages, how many they send, and when they
send them.

While many people have speculated about the ben-
efits of dummy traffic, we have not yet seen any con-
vincing analysis. For this reason, while Mixminion is
flexible enough to support them, we plan to leave dum-
mies out of the design (other than their minimal use in
Section 8.1) until their effects on anonymity are better
understood.

We have working code which implements most of the de-
signs described in this paper, with acceptable performance
even using 2048 bit RSA keys (800KB of messages per sec-
ond on a 1GHz Athlon). We invite interested developers
to join the mixminion-dev mailing list and examine the
more detailed Mixminion specification [24].
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