Identifying and characterizing Sybils in the Tor network

August 12, 2016
USENIX Security Symposium

Philipp Winter Princeton University and Karlstad University

Roya Ensafi Princeton University

Karsten Loesing The Tor Project

Nick Feamster Princeton University

List of Accepted Papers

Hey, You Have a Problem: On the Feasibility of Large-Scale Web Vulnerability Notification

Ben Stock, Giancarlo Pellegrino, and Christian Rossow, Saarland University; Martin Johns, SAP SE; Michael Backes,

Saarland University and Max Planck Institute for Software Systems (MPI-SWS)

Identifying and Characterizing Sybils in the Tor network

Philipp Winter, Princeton University and Karlstad University; Roya Ensafi, Princeton University; Karsten Loesing, The Tor Project; Nick Feamster, Princeton University Philipp Winter, Princeton University and Karlstad University

You Are Who You Know and How You Behave: Attribute Inference Attacks via Users' Social Friends and Behaviors

Neil Zhenqiang Gong, Iowa State University: Bin Liu, Rutgers University

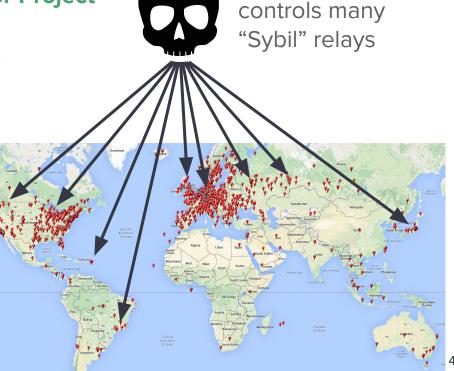
What Cannot be Read, Cannot be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
Giorgi Maisuradze, Saarland University; Michael Backes, Saarland University and Max Planck Institute for Software

Systems (MPI-SWS); Christian Rossow, Saarland University

The double-edged sword of volunteer-run networks

- The Tor code is developed by The Tor Project
- The Tor network is run by volunteers
- Currently ~7,000 relays
- Low barrier of entry

Tor relays as of Aug 2016


The double-edged sword of volunteer-run networks

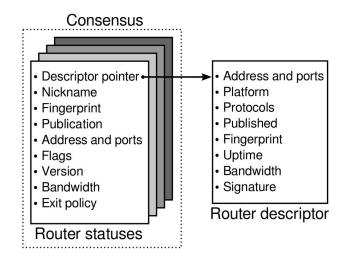
The Tor code is developed by The Tor Project

The Tor **network** is run by **volunteers**

Currently ~7,000 relays

Low barrier of entry

Single attacker

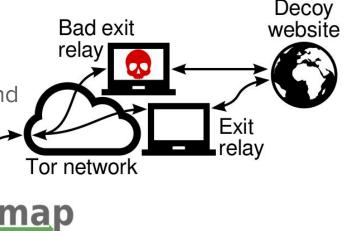

Existing Sybil defenses don't help

- Social network-based defenses don't apply
- Proof-of-work-based defenses inherent to running a relay
- Instead, we leverage two observations to detect Sybils
 - Sybils often controlled similarly
 - Sybils often configured similarly

Nickname	IP address	ORPort	DirPort	Flags	Version	OS	Bandwidth
Unnamed	204.45.15.234	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.15.235	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.15.236	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.15.237	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.250.10	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.250.11	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.250.12	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.250.13	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400
Unnamed	204.45.250.14	9001	9030	Fast Guard HSDir Stable Running Valid V2Dir	0.2.4.18-rc	FreeBSD	26214400

Passive dataset

- The Tor Project archives lots of data
 - Available at collector.torproject.org
- Network consensus hourly published
 - List of currently-running relays
- We use ~100 GiB of archived data
 - Tells us **network state** on any given date since 2005



Active dataset

- Used exit relay scanner exitmap
 - Runs arbitrary network task over all ~1,000 exit relays
 - Sends decoy traffic over exit relays
- Wrote exitmap modules to detect HTML and

HTTP tampering

- Checks if decoy traffic is modified by exit relay
- Ran modules for 18 months
- Found 251 malicious relays that serve as ground truth
 - Most of them were Sybils
 - Many attempted to steal Bitcoins
 - Some injected JavaScript

Introducing sybilhunter

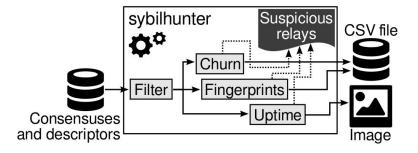
- New tool we developed and maintain
 - Freely available at <u>nymity.ch/sybilhunting/</u>
 - ~5,000 lines of code in golang
- Implements four analysis methods
 - Network churn
 - Relay uptime visualisation
 - Nearest-neighbour ranking
 - Fingerprint frequency

⊞ README.md

sybilhunter

build passin

Overview

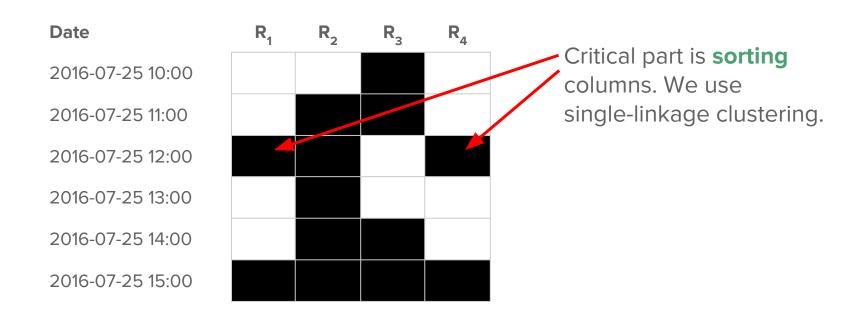

Sybilhunter is a command line tool written in Go to discover and analyse Sybil relays in the Tor network. It does so by implementing a number of analysis techniques that take as input archived Tor network data. For example, sybilhunter can tell you (i) when an unusally large amount of relays joined or left the Tor network, (ii) which Tor relays changed their identity keys a lot, and (iii) which Tor relays are configured very similar to each other. Ideally, sybilhunter should become a Swiss Army knife for analysing anomalies in network consensuses and relay descriptors. The theory behind sybilhunter is discussed in a research paper that was published at the USENIX Security 2016 conference.

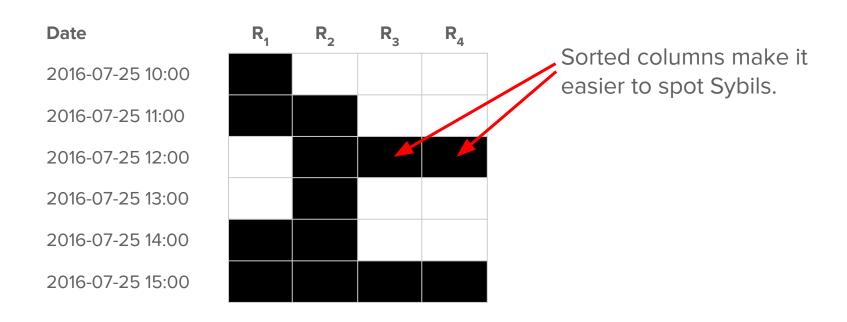
Get started in 5 minutes


Assuming you have a working Go installation, this is how you can get started:

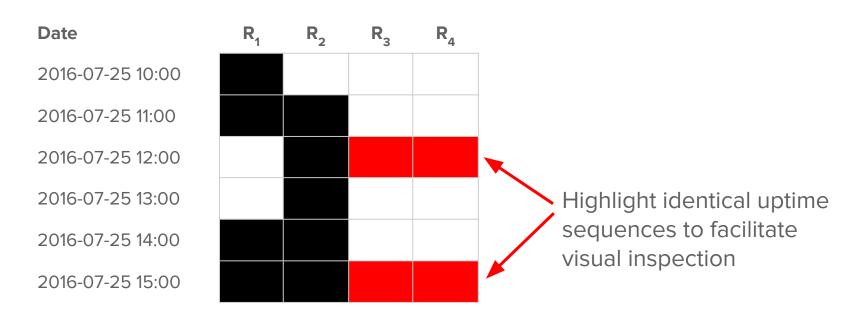
- \$ go get github.com/NullHypothesis/sybilhunter
- \$ wget https://collector.torproject.org/archive/relay-descriptors/consensuses/consensuses-2015-08.tar.xz
 \$ tar xvJf consensuses-2015-08.tar.xz
- \$ sybilhunter -data consensuses-2015-08 -print

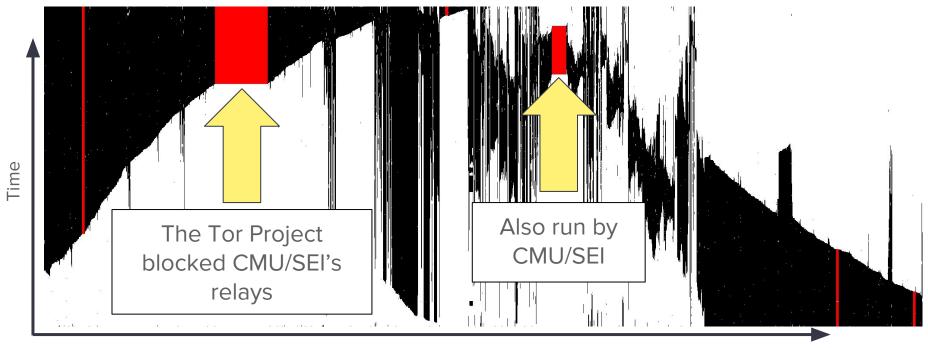
Now you have one month worth of consensuses and can proceed to the next section to learn more about analysis examples.


- **Each hour**, Tor publishes new consensus
- Allows us to create binary uptime sequences for Tor relays

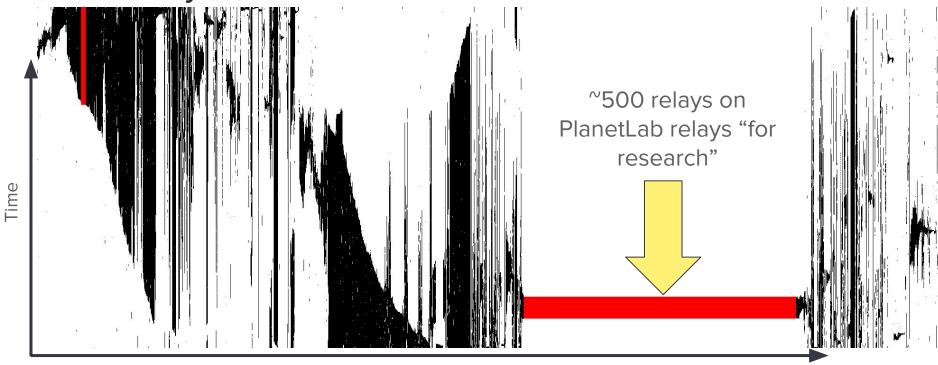

- **Each hour**, Tor publishes new consensus
- Allows us to create binary uptime sequences for Tor relays

Date	R ₁	R_2	R_3	R_4
2016-07-25 10:00				
2016-07-25 11:00				
2016-07-25 12:00				
2016-07-25 13:00				
2016-07-25 14:00				
2016-07-25 15:00				

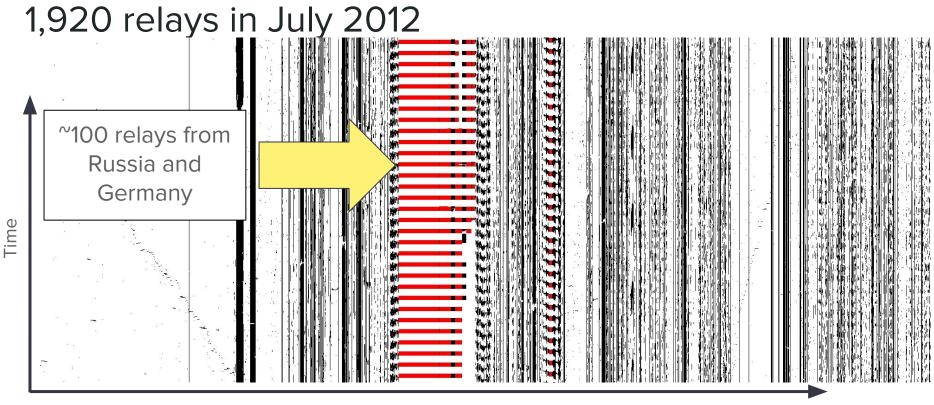

- **Each hour**, Tor publishes new consensus
- Allows us to create binary uptime sequences for Tor relays


- **Each hour**, Tor publishes new consensus
- Allows us to create binary uptime sequences for Tor relays

- Each hour, Tor publishes new consensus
- Allows us to create binary uptime sequences for Tor relays



2,034 relays in July 2014



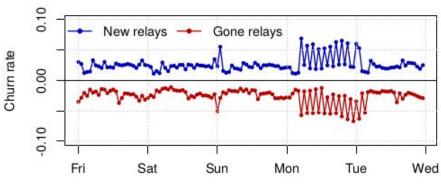
Relay index

1,629 relays in June 2010

Relay index

Relay index

1,920 relays in July 2015


Relay index

Network churn (method #2)

- Uptime images provide very fine-grained view
- Churn between two subsequent consensuses
 - Each hour, we calculate new churn values

New churn =
$$\frac{|\text{Consensus}_t \setminus \text{Consensus}_{t-1}|}{|\text{Consensus}_t|}$$
Gone churn =
$$\frac{|\text{Consensus}_{t-1} \setminus \text{Consensus}_{t}|}{|\text{Consensus}_{t-1}|}$$

- Tor network grew more stable
 - Median decreased from 0.04 (2008) to 0.02 (2015)

Time

Changing fingerprints (method #3)

- Generally, Tor relays don't change their fingerprints
 - Fingerprint is 40-digit, relay-specific hash over public key
- Systematic changes can be sign of DHT manipulation
- Excerpt from March 2013:

```
54.242.125.205 (24 unique fingerprints)
54.242.232.162 (24 unique fingerprints)
54.242.42.137 (24 unique fingerprints)
54.242.79.68 (24 unique fingerprints)
54.242.248.129 (24 unique fingerprints)
54.242.151.229 (24 unique fingerprints)
54.242.198.54 (24 unique fingerprints)
See S&P'13 paper "Trawling for Tor Hidden Services"
```

```
Transing for Tor Hidden Services: Detection, Measurement, Demonyusionline

Ass. Reviews. Ann Perspect. Ask Perspect.

Ass. Reviews. Ann Perspect. Ask Perspect.

Ass. Reviews. Ann Perspect. Ask Perspect.

Ass. Reviews. Ass. Reviews. Ask Perspect.

Ass. Reviews. Reviews. Ask Perspect.

Ass. Reviews. Ask Per
```

Nearest neighbour ranking (method #4)

- Exitmap occasionally discovered malicious relays
 - Were there **more**, but we failed to find them?
 - Given relay R₁, what are its most similar "neighbours"?
- Rank relay's nearest neighbour by configuration similarity
 - First, turn relay configurations into string
 - Then, calculate Levenshtein distance to "reference" relay
- Example of Levenshtein distance being six
 - Four modifications
 - Two deletions
 - s_1 : Foo10.0.19001
 - s_2 : Bar10.0.0.2549001

Nearest neighbour search in action

Tool available at <u>nymity.ch/sybilhunting/</u>

distance	fingerprint	nickname	addr	orport	dirport	version	os	avgbw	burstbw	obsbw	uptime
0	9B94CD0B	Karlstad0	193.11.166.194	9000	80	0.2.7.6	Linux	5242880	5242880	3793528	4138545
17	CCEF02AA	Karlstad1	193.11.166.194	9001	0	0.2.7.6	Linux	5242880	5242880	2603618	4160322
53	1D <mark>94C</mark> 88C	namodnar	109.234.36.196	9001	0	0.2.7.6	Linux	524288	524288	579933	389058
54	5EBEE2C8	pansomati	91.121.116.34	9001	90	0.2.8.6	Linux	524288	524288	5 <mark>7</mark> 1995	57598
55	87208976	MTRLXXX	83.171.163.92	9001	0	0.2.7.6	Linux	262144	524288	312708	64921
55	4EF28F0A	tazzwei	193.104.220.54	9001	90	0.2.8.6	Linux	102400	524288	158720	1
56	C2B87413	TorUpcW19	62.178.212.104	9001	0	0.2.7.6	Linux	524288	524288	5 <mark>7</mark> 6221	293715
57	F40E5D63	hulahula	149.172.153.17	9001	0	0.2.7.6	Linux	1024000	1228800	93184	4
57	A49AEAC3	Nixbits	69.196. <mark>16</mark> 5.41	9001	0	0.2.7.6	Linux	3 <mark>2</mark> 7680	327680	360296	844302
57	D20C0063	TorTchris	149.202.17.223	9001	90	0.2.7.6	Linux	5242880	5242880	6049628	3709289
57	82E9BEBE	doumeki	185.44.105.198	9001	90	0.2.7.6	Linux	2621440	5242880	3173158	82298
57	20CA4B58	Unnamed	212.116.101.82	9001	0	0.2.7.6	Linux	524288	524288	577286	1399750
58	A799FDF5	Верро	91.45.254.102	9001	0	0.2.7.6	Linux	524288	1048576	627876	64843
58	F604131D	oromis	217.112.131.98	9001	80	0.2.7.6	Linux	5242880	534 7737	5 <mark>7</mark> 19375	4498994
58	89B6739F	ht	71.61.134.152	448	0	0.2.7.6	Linux	524288	524288	9858	229576
58	9A2CC287	Bad0PS	163.172.155.10	9001	90	0.2.7.6	Linux	5242880	1048576	1266176	6 <mark>1</mark>
58	279C520E	vdkstor01	46.37.157.31	9001	90	0.2.8.6	Linux	524288	524288	573440	59
58	B16E2DDE	ninostor	85.169.135.105	9001	0	0.2.8.6	Linux	122880	204800	142 <mark>3</mark> 36	1679
59	E07A0C8E	driftwood	163.172.139.14	9001	90	0.2.7.6	Linux	5242880	10 <mark>4</mark> 8576	5832 <mark>52</mark> 1	28853
59	D0BEF4C3	lart	198.100.148.14	995	80	0.2.7.6	Linux	2097152	5242880	2794503	1311274

Our results in a nutshell

Studied twenty Sybil groups → lower bound

Purpose	# of Sybil groups	Description
MitM	7	Attempted to steal Bitcoins by manipulating Tor exit traffic
Botnet	2	Relays seemed part of botnet
DoS	1	Attempted to (unsuccessfully) disable Tor network
Research	4	Various live experiments, mostly on hidden services
Unknown	6	Purpose unclear, perhaps benign

Discussion of "Bitcoin Sybils"

- Attempted to steal Bitcoins from Tor users
 - All Sybils were exit relays
 - Transparent rewriting of Bitcoin addresses
- Resurfaced after The Tor Project blocked relays
 - Game of whack-a-mole
 - Went on for many months

Original:

14Rwtr11Mkc6wix9isJ7SPFZMY4Rq7st7a

Fake:

14RW9mkoDosyCxzupWTVuLVqs5T4FSeBx7

Limitations

- Determining intent is hard
- Our results are a lower bound
- Sybilhunter works best against ignorant attacker
 - Open analysis framework, secret parameters
- Hard to exposure future attacks

Discussion

- Our adversaries are often lazy and we can exploit that
- Different types of Sybils call for different methods
- Academic research not harmless by definition
 - o research.torproject.org/safetyboard.html
- Methods are general and apply to other networks as well
- Crowdsourcing successful

Acknowledgements

Karsten Loesing

Nick Feamster

Thanks to

- Georg Koppen
- Prateek Mittal
- Stefan Lindskog
- Tor developers and community
- Tudor Dumitraş (our shepherd)
- Open code, data, visualisations:
 - o nymity.ch/sybilhunting/
- Contact
 - o phw@nymity.ch
 - @__phw

Acknowledgements

Roya is looking for a faculty position!

- Open code, data, visualisations:
 - o nymity.ch/sybilhunting/
- Contact
 - phw@nymity.ch