
Computational Puzzles as Sybil Defenses
Nikita Borisov

Department of Electrical & Computer Engineering
University of Illinois at Urbana-Champaign

Email: nikita@uiuc.edu

Abstract— We consider the problem of defending against Sybil
attacks using computational puzzles. A fundamental difficulty in
such defenses is enforcing that puzzle solutions not be reused by
attackers over time. We propose a fully decentralized scheme
to enforce this by continually distributing locally generated
challenges that are then incorporated into the puzzle solutions.

Our approach consists of an all-to-all broadcast of challenges,
with a combining function to ensure this can be done efficiently.
The combining function generates certificates that can be used
to prove that each node’s challenge was delivered to and used by
each other node, therefore proving the freshness of each puzzle.
We show how our distribution and verification mechanisms can
be implemented on top of the the Chord [21] overlay.

I. INTRODUCTION

Peer-to-peer research has created an architecture for cre-
ating completely decentralized distributed systems with large
numbers of participants. There are many applications where
a centralized point of control is undesirable, whether it be
because of a trust issue, such as with anonymous networks,
or for emerging applications where a centralized point has
not yet been established. However, the lack of a central point
of makes it difficult to control admission to the network and
therefore enables the Sybil attack [7]. Because the cost of
participating in a peer-to-peer network is typically low, it is
easy for an attacker to create a large number of phantom nodes,
potentially overwhelming the membership of the peer-to-peer
network and allowing abuse of or attacks on the network.

Sybil attacks are not unique to peer-to-peer networks; other
contexts where the low cost of using a service can lead to abuse
are email (spam) and web services (denial of service attacks).
A common solution explored in all of these cases is artificially
raising the cost of using a service, through computation (client
puzzles [13]), human time (CAPTCHAs [22]), or even through
imposing direct financial costs on participation. These solu-
tions have been more effective in non-p2p contexts because
of the difficulty of imposing this cost in a fully decentralized
system. It is impractical to offer financial compensation to or
perform a CAPTCHA for every one of the thousands peer-to-
peer node you interact with.

This problem could be solved with a level of indirection,
using a centralized service that issues membership certificates
while imposing some cost on the participants. Such a service,
however, must be scalable, reliable, and trustworthy. Part of the
success of p2p networks has relied precisely on avoiding such
centralized points — a decentralized, self-organizing system
is much easier to deploy, and decentralized trust is essential

to some applications of p2p overlays, such as anonymous
networks [19], [9].

We propose a completely decentralized Sybil solution in-
volving computational puzzles. Such puzzles involve posing
a challenge that requires a large amount of computation to
solve but is easy to verify. The difficulty in using puzzles in a
decentralized context is in the process of issuing challenges.
A node could issue a challenge before it first communicates
with a node, but that would introduce undue latency; as well,
the cost imposed on attackers is still only proportional to the
amount of legitimate traffic, rather than the number of phantom
nodes. On the other hand, it is impractical to issue a challenge
to potential communication partners before communicating
with them, since the set of potential partners can be as large
as the whole network.

Our solution involves an efficient broadcast of a challenge
from each peer-to-peer node to each other node. By combining
challenges as they are broadcast, the overhead for this all-
to-all communication can be accomplished with only O(k)
overhead, where k is the degree of the node. The combination
operation itself is verifiable; the proof that a node’s challenge
was included in the puzzle answered by a node is distributed
along the communication path towards that node, so it can
naturally and efficiently be collected and verified any time a
communication between two nodes is required.

II. BACKGROUND

A. Computational Puzzles

The idea of using computation to restrict abuse dates back
to Naor and Dwork [8], who suggested using it to fight spam.
An email sender would take a hash of a message contents,
as well as the address of the sender and destination, and
then feed it as input to a a moderately hard function (or a
“pricing function”): a function that is (moderately) difficult
to compute but the result of which is easy to verify. The
output of the function would be included with the message. An
email recipient would only accept a message upon verifying
the result of the pricing function. In this way, a new pricing
function computation would need to be performed per each
individual message, imposing a minimal cost on legitimate
email users but a heavy one on spammers.

A similar scheme has been used to prevent denial of service.
Juels and Brainard [13] suggested issuing client puzzles to
anyone requesting service and requiring a solution before the
service is provided. The puzzle consists of a random input to a

pricing function, so client puzzles are effectively an interactive
equivalent of the non-interactive email puzzle protocol.

B. Sybil Attacks

A Sybil attack [7] consists of an attacker introducing a large
number of phantom nodes into a network. Without centralized
admission control, it is difficult to distinguish multiple nodes
operated by a single attacker from several independent nodes.
Since the cost of participation in a p2p network is usually low,
resourceful attackers can introduce enough phantom nodes
such that a very large fraction of all nodes belong to them.
This can be used for denial of service or other abuse of the
network.

Of course, denial of service can still be carried out even if
the number of malicious nodes are limited. However, in this
case, effective countermeasures can be used: Castro et al [4]
describe a set of secure routing primitives that are able to
significantly improve resilience to DoS attacks in structured
P2P networks. They advocate a certificate-based approach for
restricting participation, wherein each node must obtain a
certificate from a central authority before it is allowed to join
the p2p network.

The certificate is used to both prove that a node is allowed
to participate and to assign it a unique position within the
Pastry structured overlay [20]. The positions are then used to
verify that routes and connections are made according to the
Pastry algorithms and not directed towards malicious nodes.
If misbehavior is suspected, several messages are sent along a
diverse set of routes to ensure delivery in the face of further
attacks.

C. Precomputation

Our approach is to impose a computational cost on occupy-
ing a position within the overlay. This will limit the number
of positions that attackers are able to compromise, and hence
enable some of the mechanisms developed in [4] to be effective
without any centralized requirements.

Castro et al in fact consider one simple computational
puzzle approach. They suggest that participants in the network
generate a public/private key pair such that the SHA1 hash of
the public key has p “0” bits at the end. The work required to
find such a pair is O(2p). A node’s position is then determined
by taking another hash of the public key. It is easy for
participants to prove that they have done the work to occupy
a particular position simply by presenting the public key and
authenticating a message with the corresponding private key.

This approach has the disadvantage that it is amenable to
precomputation. Attackers can continually generate new key
pairs of the appropriate form to gain an increasing number of
positions. Over time, an arbitrary fraction of nodes will belong
to attackers.

Note that client puzzles used to prevent denial of service do
not suffer from this problem, because each server transaction
requires solving a new puzzle, created by the server. Castro et
al suggest that this could be imitated by using a public source
of randomness to generate a new challenge every time period.

However, such a source would be both a centralized point
of trust — predicting the random outputs could be used for
precomputation — and failure. In particular, a targeted denial-
of-service attack against the randomness source itself could be
used to disable the network. Our contribution consists of a way
to use the overlay itself to create this source of randomness

D. Limitations

Before we discuss our approach, we want to address a
common criticism of the computational puzzle approach. The
approach breaks down when there is a large disparity between
the computational ability of would-be attackers and legitimate
users. If, for example, some legitimate users are stuck with
out-of-date hardware, while attackers have access to high-
performance computing clusters, the attackers may be able
to solve puzzles several orders of magnitude faster than
legitimate users. Although the hardness of puzzles is easily
parameterizable, any choice of difficulty will either restrict
legitimate users too much or not block attackers enough under
such a scenario.

We do not hope to solve this fundamental problem here,
and as such our solution is ultimately limited. However, we
believe that for a wide range of applications, a puzzle approach
is appropriate. With a large enough number of users, even a
small computational requirement can stop all but the most
resourceful of attackers from attaining a significant fraction
of nodes in the network. In medium-sized networks, the costs
of mounting Sybil attacks will still be increased out of the
reach of casual attackers, improving the resilience of the
p2p network. And proxies can help severely computationally
constrained users participate in the network.

Finally, any defense against Sybil attacks hits a fundamental
limit if the amount of resources attackers are willing to expend
exceeds those of legitimate users. For example, attackers could
pay people to donate computing time, obtain certificates, or
perform CAPTCHAs. A proper comparison of the efficacy of
Sybil defenses will depend on a detailed cost analysis — an
important question, but one we leave for future research. Our
goal in this paper is to demonstrate the technical feasibility of
a computation-based Sybil defense.

III. OUR SCHEME

The key to our design is a mechanism to create random
challenges based on inputs from all the participants in the p2p
network. The challenges are used as input to computational
puzzles that are required to participate in the network. When-
ever a node A contacts another node B, A can verify both
that B has solved the puzzle and that A’s random input has
been included in the computation. This way, A is sure that B
has recently expended some amount of computation in order
to secure its participation in the network.

A. Overlay Basis

Our design is intended to function in concert with the secure
routing primitives by Castro et al [4]. Their description is
based on the Pastry structured overlay [20], but the concepts

can easily be translated to other overlay types. Most of our
mechanisms similarly translate naturally to common types
of overlays; for concreteness, we will use Chord [21] as an
example and we will discuss other overlay choices below.

Briefly, each node in Chord is assigned an identifier between
0 and 2k − 1, where k = 128 or k = 160. Chord uses the
concept of a successor node: for x ∈ [0, 2k−1], succ(x) is the
node with the next highest identifier larger than x (wrapping
around at 0). A node with identifier y has neighbor links
(or fingers) to the successors of y + 2i (mod 2k) for i =
0, . . . , k − 1. In a network of N nodes, only about O(log N)
of these fingers will be distinct. Routing to a destination z
proceeds by recursively contacting the finger whose identifier
is closest to z, using the distance metric of z− y (mod 2k).
Such routing is expected to take O(log N) hops to reach any
destination.

B. Distributing Challenges

To maintain the structure of the distributed overlay, each
node in Chord will periodically send a ping to each of its
neighbors, to ensure they are still available. We modify this
ping message to include two numbers: each node A will send a
sequence number n(A) and a challenge cn(A) in each message.
The sequence number increases with each message, while the
challenge is calculated as follows:

Let n(B1), . . . , n(Bm) be the sequence numbers from the last
ping message received from each of the node A’s m neighbors,
and let cn(B1) , . . . , cn(Bm) be the corresponding challenges.
Then:

cn(A) = H(B1||n(B1)||cn(B1) || . . .
||Bm||n(Bm)||cn(Bm) ||rn(A) ||cn(A)−1)

where H() is the SHA1 hash function [18], || represents
concatenation, and rn(A) is a random number chosen by node
A. The node records cn(A) , rn(A) and n(Bi), cn(Bi) for each
i in a table Staten(A) . The table only needs to keep the last
2t + d entries; the values t and d will be discussed below.

The challenge that A sends out is based on the challenges
it received from all of its neighbors. Similarly, in turn, A’s
neighbors’ challenges in the next round of pings they send out
will be based on A’s challenge, and so on. In this way, A’s
challenge will flood the entire overlay through ping messages.
The diameter of Chord networks is O(log N), so if a ping is
sent every second, all nodes’ challenges will be based on A’s
challenge in less than a minute for any reasonable network
size.

C. Challenge Verification

The purpose of using a cryptographic hash function is to
confirm that a challenge was computed correctly. If A’s neigh-
bor Bi wants to confirm that cn(Bi) was included in the com-
putation of cn(A) , A can present the values Bj , n

(Bj), c
n(Bj) ,

for all its other neighbors, as well as cn(A)−1 and rn(A) , as
recorded in Staten(A)) , and Bi can confirm that the computa-
tion was performed correctly. The property of the SHA1 hash
function ensures that A could not have computed cn(A) before

learning cn(Bi) , since, given c and h, it is infeasible to find
strings a and b such that H(a||c||b) = h. Therefore, the hash
function enforces a verifiable temporal order on the challenges.

Once Bi learns cn(A) and verifies that cn(Bi) was included
in its computation, it can then contact one of A’s neighbors,
C, and verify that cn(C) is based on cn(A) , which is in turn
based on cn(Bi) using the same proof procedure. It can then
iteratively follow the overlay links and for each node obtain a
temporal link between its challenge and the current challenge
of any node.

Note that Bi it may need to pick an older challenge to start
with, since its newer challenges may not have propagated to
the entire network. If we expect the diameter of the network to
be about d, then Bi can begin with cn(Bi)−d. Then A would
look up cn(Bi)−d in one of its State records, and return a
corresponding cn(A)−l challenge with a proof that cn(Bi)−d

was included in it. It would then query C about cn(A)−l, and
so on. If Bi sends a new ping every second, it would know
that for any node X that it reached this way, the challenge
cn(X)−l′ was computed at most d seconds ago.

Whenever a node Bi routes a message, it will first contact
one of its neighbors, say X1, then one of X1’s neighbors, say
X2, and so on. At each step of the route, Xj , Bi can verify that
its challenge cn(Bi)−d was included in c

n(Xj)−lj
for some lj .

We will next use this ability to impose computational puzzles
on nodes.

D. Computing Puzzles

Every t time steps, each node will compute a puzzle based
on the current value of n(A) and cn(A) . The puzzle consists of
finding a value sn(A) such that:

H(IDA||PKA||n(A)||cn(A) ||sn(A)) = h

with the last p bits of h equal to 0, where idA is the Chord
identifier assigned to node A, and PKA is its public key. To
solve this puzzle, A needs to perform O(2p) hash function
evaluations with random values for sn(A) ; by changing the
parameter p, the amount of work A needs to perform can be
varied arbitrarily. The main constraint on p is that the slowest
node that wants to participate in the network should be able
to compute O(2p) hashes in fewer than t time steps.

Using the mechanism from the last subsection, whenever
a node X routes a message to or through node Y , it can
find out a temporal relationship between cn(X)−d and cn(Y)−l

for some l. By starting with cn(X)−d−2t instead, X can find
some cn(Y)−l′ where l′ ≥ 2t. Let n(Y) − q be the sequence
number of the last challenge that node Y used for a puzzle, and
n′ = n(Y) − q − t be the previous one. Since it takes at most
t time steps to solve a puzzle, the puzzle based on cn′ must
have already been solved and Y can present the solution, sn′ .
Further, since q < t, Y can show that cn′ is based on cn(Y)−l′ ,
since:

cn′ = H(x1||H(x2|| . . . ||H(xl′−t−q||cn(Y)−l′) . . .))

for some strings xi. So X can be assured that Y has performed
O(2p) hash function evaluations in the last 2t + d time steps.

Since the puzzle solution incorporates both IDY and PK Y ,
X can be sure that some node with public key PK Y has
solved a puzzle allowing it to occupy position IDY . Therefore,
the corresponding private key can be used to authenticate
messages, such as those used in the routing failure test in [4].
Since a different puzzle is used for every identifier, the amount
of work Sybil attackers have to do is proportional to the
number of positions they try to occupy. And the challenge
distribution and verification mechanisms ensure that they can-
not use precomputation to build up solutions and occupy more
positions.

IV. DISCUSSION

A. Dealing with Churn

The distribution and verification mechanisms described so
far assume a static network topology, where message routes
follow the same links as the pings that precede them. In reality,
the overlay membership and structure may have changed in the
last 2t+d time steps, and the route may take a link C → D that
has only recently appeared. In this case, it will be impossible
to relate cn(C)−l and cn(D)−l′ except for very small values of
l′ (namely, l′ < 2t).

We first deal with additions to the network. When a new
node C joins, other nodes will change some of their fingers
to point to it. We modify the neighbor maintenance algorithm
such that the old fingers that would be replaced with links
to C are maintained for 2t + d time steps. During that time,
any queries that would normally be sent to C are sent along
the old link, since there is a temporal relationship between
the old challenge values that is necessary to verify puzzle
computations.

To deal with departing nodes, we use the the flexible route
selection and static resilience properties of Chord [10]. While
the normal routing algorithm in Chord uses the finger link that
is closest to the destination for the next hop, it is possible to
choose a different finger, as long as it still makes progress
towards the destination. Therefore, the routes in Chord are
flexible, and this kind of selection of non-optimal next hops
has only a minimal effect on the average lengths of the routes.
Whenever the optimal hop from a node D for destination y
has left the network in the last 2t+d steps, we cannot use the
replacement finger to forward the query since it is too new.
However, we can simply use the next best neighbor link to
follow.

How well does this work? We can answer this question
by measuring the static resilience of Chord. Static resilience
describes the percentage of queries that could be successfully
routed if some fraction of nodes failed and no repair action
was taken. This corresponds exactly to the scenario of departed
nodes, since any repair actions taken in the last 2t + d steps
cannot be used. Chord has been shown to have a very high
level of static resilience [10]: even with 50% of unrepaired
node failures, flexible routing can successfully repair all but
20% of the queries. This is our main motivation for using the
Chord overlay as the basis of our system; other overlays could

be used, but would result in a higher percentage of undelivered
queries.

Of course, the restriction that we cannot use any of the
links established over the last 2t + d time steps introduces
inefficiencies into the operation of the overlay. However, if
the p2p overlay stores self-certifying data, and if most queries
are expected to succeed, we can first send a query on the most
efficient path and not verifying puzzle solutions. In the rare
case that the data is not found, the full scheme using older
links can be used to verify this fact, similar to the two-level
solution in [4].

B. Choice of t

The restriction that links formed in the last 2t + d time
steps cannot be used imposes a limit on the length of t that
is reasonable. Peer-to-peer networks have been shown to have
mean node lifetimes on the order of one hour, so a reasonable
choice for t may be 3 minutes, so that during 2t + d time
steps, about 10% churn is experienced. This results in a small
number of unroutable queries, due to the static resilience of
Chord.

We recommend against setting t much lower, since oth-
erwise attackers may be able to solve the puzzles online in
the process of answering a query. This could give attackers
a significant advantage in networks where the query volume
is much lower than the number of nodes in a system. An
attacker could only compute those challenges that correspond
to a query and still occupy an arbitrary number of positions
in the network. With longer puzzles, the attackers are forced
to commit to their positions before queries are issued and
therefore have less flexibility in their attack strategy.

C. Position Flexibility

A certificate, as described in [4], fixes the position that a
node can occupy in the network. Our scheme, in contrast, gives
a node flexibility to chose its position, and even to switch it
from time to time; as a result, our scheme is compatible with
load-balancing algorithms.

A random allocation of nodes to positions results in some
variation in the distance between two successive nodes. In
networks such as Chord, such distance will vary by a factor
of O(log2 n) [17]. Balancing algorithms [2], [17], [1], [14],
[16] can reduce this figure to O(1), sometimes as small as
2 [16].

The primary motivation for using these algorithms is to
balance load on each p2p node, which is proportional to the
distance to the next node. An imbalance in the distribution of
nodes can also result in less efficient routing; a load-balancing
algorithm could shrink the diameter of the p2p overlay and
therefore we could use a smaller d value in our scheme. Load
balancing can also improve the performance of the density test
used to determine whether routing was successful [4], reducing
the number of false negatives and positives for such a test.

Some load-balancing algorithms [17], [1], [14] are based
on assigning O(log n) random positions to each node and
having the node switch between them to maintain balance.

Such algorithms could be compatible with a certificate-based
Sybil defense, as each certificate could represent the right to
occupy one of O(log n) positions, rather than a single one.
However, this would allow attackers to introduce a factor of
O(log n) more nodes than certificates; also, the most efficient
load-balancing algorithms [16] rely on explicitly assigning
positions to nodes.

Position flexibility in our scheme does make it easier for
attackers to selectively deny service to a certain position in
the network by occupying all locations around that position.
Selective DoS is probably most relevant to p2p publishing
systems, where attackers may wish to block a particular
document. In other systems that use unpredictable, random
looking keys, attackers will have a hard time picking a position
to attack. Even with a certificate-based system, selective denial
of service can be carried out by directly attacking the node at
a particular position; techniques that hide the correspondence
of nodes and positions may be used to make such attacks more
difficult [12], [5].

V. RELATED WORK

A potential alternative to address Sybil attacks is to use
IP addresses as a scarce resource. However, it is sometimes
possible for attackers with access to /A or /B network to
obtain a large number of addresses; conversely, many users
behind network address translation gateways share the same
IP address. These issues have been explored in the special case
of anonymous p2p networks in MorphMix [19] and Tarzan [9]
anonymous networks. These designs ensure that any network
path traverses IP addresses from different /16 prefixes, while
allowing in principle participation of any number of nodes
from a given prefix, or even a particular IP address, but they
do not easily generalize to blocking Sybil attacks on generic
distributed hash tables or other p2p overlays.

Danezis et al propose to use social information to address
Sybil attacks [6]. Their design uses a “bootstrap” graph that
maintains a record of which node introduced each node to the
network. The intuition is that this graph reflects the out-of-
band social relationships between nodes in the network and
provides a diverse set of paths that can be used to reach
most nodes. Their algorithms survive even a majority of Sybil
nodes, but the routing efficiency depends on the shape of the
bootstrap graph and is linear in the number of nodes in the
worst case.

Our approach of using computational puzzles as Sybil
defenses was inspired by the ongoing work by Halderman
and Waters that aims to build random challenges using public
sources of randomness [11].

There have been a number of application of computational
puzzles [3], [8], [13]. Perhaps the most closely related to our
work is outsourcing puzzle creation to bastions [23]. As in
our scheme, bastions allow clients to solve puzzles before
contacting a service, and this puzzle solution can later be
verified. The bastions, however, have to be a trusted source
of randomness, and the cryptographic protocols for generating

puzzles based on this source are significantly more complex
than ours.

Our mechanism for spreading challenges parallels the tools
used in secure timeline entanglement [15], which also use
hashes to prove a partial order of events in a distributed
systems.

VI. CONCLUSION

We have described a fully decentralized mechanism to
defend against Sybil attacks in structured p2p overlays based
on computational puzzles. We showed how to address the
problem of puzzle precomputation through distributing fresh
challenges to nodes in the network. Our mechanism allows
each participant to verify that its challenge was delivered to
each other participant and therefore locally verify the freshness
of the puzzle solution. Our solution can be combined with the
secure routing primitives from [4] to create a p2p network
resilient to denial of service attacks without any point of
centralization.

VII. ACKNOWLEDGMENTS

We would like to thank Alex Halderman and Brent Waters
for motivating our work in this area and for helpful discussions
about computational puzzles and peer-to-peer networks. We
would also like to thank the anonymous referees for their
helpful suggestions.

REFERENCES

[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and E. Pavlov.
A generic scheme for building overlay networks in adversarial scenarios.
In Proceedings of the International Parallel and Distributed Processing
Symposium, April 2003.

[2] M. Adler, E. Halperin, R.M. Karp, and V.V. Vazirani. A stochastic
process on the hypercube with applications to peer-to-peer networks.
In Proceedings of the 35th ACM Symposium on Theory of Computing,
2003.

[3] A. Back. Hashcash — a denial-of-service countermeasure, 2002.
http://www.hascash.org/hashcash.pdf. Original system developed in
1997.

[4] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay
networks. In OSDI, December 2002.

[5] G. Ciaccio. Recipient anonymity in a structured overlay. In International
Conference on Web Applications and Services, 2006.

[6] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoekk, and R. Anderson.
Sybil-resistant DHT routing. In 10th European Symposium on Research
in Computer Security, 2005.

[7] John Douceur. The Sybil Attack. In Proceedings of the 1st International
Peer To Peer Systems Workshop, March 2002.

[8] C. Dwork and M. Naor. Pricing via processing or combatting junk mail.
In CRYPTO, 1992.

[9] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer
anonymizing network layer. In 9th ACM Conference on Computer and
Communications Security, Washington, DC, November 2002.

[10] Krishna P. Gummadi, Ramakrishna Gummadi, Steven D. Gribble, Sylvia
Ratnasamy, Scott Shenker, and Ion Stoica. The impact of DHT
routing geometry on resilience and proximity. In Proceedings of ACM
SIGCOMM 2003, August 2003.

[11] J.A. Halderman and B. Waters. Personal communication. 2005.
[12] Steven Hazel and Brandown Wiley. Achord: A variant of the Chord

lookup service for use in censorhip resistant peer-to-peer publishing
systems. In Proceedings of the 1st International Workshop on Peer-
to-Peer Systems, Cambridge, MA, March 2002.

[13] Ari Juels and John Brainard. Client puzzles: A cryptographic counter-
measure against connection depletion attacks. In NDSS, 1999.

[14] D.R. Karger and M. Ruhl. New algorithms for load balancing in peer-
to-peer systems. In IRIS Student Workshop, 2003.

[15] P. Maniatis and M. Baker. Secure history preservation through timeline
entanglement. In USENIX Security Symposium, 2002.

[16] G. S. Manku. Balanced binary trees for ID management and load balance
in distributed hash tables. In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing, 2004.

[17] M. Naor and U. Wieder. Novel architectures for P2P applications: The
continuous-discrete approach. In ACM Symposium on Parallelism in
Algorithms and Architectures, 2003.

[18] National Institute of Standards and Technology. Secure hash standard
(SHS). Federal Information Processing Standards Publication 180-1,
April 1995.

[19] Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-
to-Peer based Anonymous Internet Usage with Collusion Detection.
In Proceedings of the Workshop on Privacy in the Electronic Society
(WPES 2002), Washington, DC, USA, November 2002.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Middleware,
pages 329–350, November 2001.

[21] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proceedings of ACM SIGCOMM, August 2001.

[22] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using
hard AI problems for security. In Eurocrypt, 2003.

[23] B. Waters, A. Juels, J.A. Halderman, and E.W. Felten. New client
puzzle outsourcing techniques for DoS resistance. In ACM Conference
on Computer and Communications Security, 2004.

