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Abstract. In recent years, much research focused on entropy as a metric
describing the “chaos” inherent to network traffic. In particular, network
entropy time series turned out to be a scalable technique to detect un-
expected behavior in network traffic.
In this paper, we propose an algorithm capable of detecting abrupt
changes in network entropy time series. Abrupt changes indicate that
the underlying frequency distribution of network traffic has changed sig-
nificantly. Empirical evidence suggests that abrupt changes are often
caused by malicious activity such as (D)DoS, network scans and worm
activity, just to name a few.
Our experiments indicate that the proposed algorithm is able to reliably
identify significant changes in network entropy time series. We believe
that our approach helps operators of large-scale computer networks in
identifying anomalies which are not visible in flow statistics.

Keywords: entropy, anomaly detection, time series analysis, network
flows

1 Introduction

Large-scale computer networks (i.e. gigabit and above) pose unique challenges
to intrusion and anomaly detection; mostly due to the tremendous amounts of
data. Network entropy time series were proposed to reduce high-dimensional
network traffic to a single metric describing the dispersion or “chaos” inherent
to network traffic [11, 18]. Our research builds upon these entropy time series.

The main contribution of this paper is a detection algorithm based on in-
formation theory and statistics. The algorithm is capable of detecting abrupt
changes in entropy time series built out of network flows. We define an abrupt
change as an unexpectedly high difference between two measurement intervals
mt−1 and mt whereas the term “unexpectedly high” depends on a configurable
threshold. There is the underlying assumption that abrupt changes are caused
by malicious and abnormal network events. This assumption is based on empir-
ical evidence as shown in previous research [18, 13, 11]. After all, our proposed



algorithm achieves satisfying results and allows practical and real-time anomaly
detection in large-scale computer networks.

The paper is structured as follows: Section 2 provides a short overview of
similar research. Section 3 introduces the basic concepts upon which our research
rests. The actual algorithm is proposed in Section 4. Section 5 contains the
evaluation while Section 6 provides a conclusion as well as future work.

2 Related Work

In [12], Lee and Xiang propose the use of information theoretic measures to
conduct anomaly detection. Their proposed measures include entropy, relative
entropy and conditional entropy, just to name a few. Lakhina et al. made use
of entropy to sum up the feature distribution of network flows [11]. By using
unsupervised learning, they show that anomalies can be clustered to “anomaly
classes”. Wagner and Plattner make use of the Kolmogorov complexity in order
to detect worms in flow data [18]. Their work mostly focuses on implementation
aspects and scalability and does not propose any specific analysis techniques.
In [17], Tellenbach et al. go further by exploring generalized entropy metrics
for the purpose of network anomaly detection. Similar work was done by Gu
et al. who made use of maximum entropy estimation to reach the same goal.
Nychis et al. conducted a comprehensive evaluation of entropy-based anomaly
detection metrics [13]. In [15], Sommer and Paxson point out why anomaly
detection systems are hardly used in operational networks. Barford et al. made
use of signal analysis techniques in order to detect anomalies [1]. In [7], Feinstein
et al. explored statistical approaches for the detection of DDoS attacks. In [3],
Brutlag proposed the use of a statistical algorithm to detect abnormal behavior
in time series. Finally, Sperotto et al. provide a comprehensive overview about
flow-based intrusion detection in general [16].

3 Preliminaries

3.1 Network Flows

Our proposed anomaly detection system (ADS) analyzes network flows rather
than entire network packets. In their original definition, network flows (in short:
flows) provide unidirectional meta information about network packets which
share the following characteristics: Source and destination IP address and ports
and IP protocol number. It is important to note that all network activity on OSI
layer 3 and above results in flows; this includes not only TCP connections but
also stateless protocols such as UDP and ICMP.

We decided in favor of network flows since they are highly lightweight (a TCP
connection which might have transferred several gigabytes accounts for only a
few dozen bytes in a flow) and alleviate the analysis of large-scale computer
networks. Also, they raise less privacy concerns since no payload is present.
Finally, network flows are widely available on network devices, e.g. in the form
of Cisco NetFlow [4] or the upcoming standardized IPFIX [5].



3.2 Entropy Time Series

The collected flows are analyzed by calculating the entropy over a sliding window.
This technique is not new and has been topic of extensive research before [12,
13, 18, 11]. We make use of the Shannon entropy which is defined as H(X) =
−
∑n

i=1 p(xi) · log2(p(xi)).
The variables x1, ..., xn represent the possible realizations of the random vari-

able X and p(xi) the probabilities of the respective realizations.
In order to make the result of the entropy analysis easier to interpret, we

normalize it to the interval [0, 1] by using the normalized entropy H0(X) =
H

log2(n)
whereas n represents the amount of different observations, i.e. xi values.

We calculate the entropy over five flow attributes which can all be found
directly in the flow record:

– Source and destination IP
– Source and destination port
– Packets per flow

Aside from the fact that previous research already achieved promising results
with these attributes [13, 18], we believe that they complement each other in a
natural way.

After all, we are dealing with a total of five entropy time series – one for every
flow attribute. The entropy time series are calculated by using an overlapping
sliding window comprising all flows observed within the last 5 minutes. The
overlapping delta is 4 minutes. So after all, every minute five entropy values are
determined and added to their respective time series. Figure 1 depicts such a
time series spanning a total of 24 hours. The data stems from the uplink of our
university.
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Fig. 1: An entropy time series of our universities uplink spanning 24 hours.

3.3 What can we Detect?

As mentioned earlier, packet payload is inevitably lost in network flows. For this
reason, all attacks which manifest solely in packet payload (e.g. remote exploits)



are invisible on the network layer. Our system focuses on detecting attacks on the
network layer. Some of these attacks, such as DDoS, are quite obvious, others,
such as botnets, often highly camouflaged. A comprehensive survey about current
research in this domain and about the potentiality of network flows in general
is done by Sperotto et al. [16].

We claim that our approach is basically capable of detecting the following
malicious activity:

– (D)DoS attacks
– Large-scale scanning activity
– Worm outbreaks

Botnet detection is beyond the scope of this contribution. However, our algo-
rithm might be of help if the activity of a certain botnet leads to abrupt changes
in entropy time series.

4 The Anomaly Detection Algorithm

The most straightforward approach in order to conduct anomaly detection, a
static threshold, is not sufficient due to the high variability of the time series.
Hence, we need an algorithm which is 1) robust against noise and 2) sensitive
enough so that attacks are still visible.

4.1 Detecting Abrupt Changes

The basic idea for detecting abrupt changes is to continuously conduct short-
term predictions and determine the difference between the prediction and the
actual measurement. The higher the difference, the more unexpected and hence
abrupt the change is.

Many time series prediction algorithms have been proposed in the past. There
are algorithms which account for trends, seasonal components or none of these.
We chose to use simple exponential smoothing (SES). The SES algorithm is
used to smooth time series as well as to conduct short-term predictions. The
algorithm is very elementary and accounts neither for seasonal, nor for trend
components.

We chose SES because it turned out to be very robust against the noise
inherent to our data set. Furthermore, there is no need for a more sophisticated
prediction algorithm since our measurement interval of 1 minute is so fine-grained
(over a seasonal cycle of 24 hours we have 1,440 measurements) that seasonal
and trend components are not of relevance.

For a time series consisting of the observations x1, ..., xn, the SES is defined
as shown in Equation 1.

x̂t =

{
x0 if t ≤ 1

α · xt−1 + (1− α) · x̂t−1 otherwise
(1)



The series x̂1, ..., x̂n represents the predictions whereas x̂i is the predicted value
for the (later) observed value xi. The parameter α, where 0 ≤ α ≤ 1, is referred
to as the smoothing factor. The closer α is to 0, the smoother the predictions
are. If α = 1, no smoothing is performed and the “smoothed” time series equals
the observed time series.

For each of the five time series, we now determine the prediction error which
is the difference between a predicted and an observed value. The error function is
defined as err(xi, x̂i) = |x̂i − xi|. However, the determined prediction errors are
not equal in their significance because the underlying time series feature different
levels of dispersion as can be seen in Figure 2. For this reason, we normalize the
prediction errors with respect to the dispersion of the respective time series.
We measure the dispersion by calculating the sample standard deviation over a
sliding window spanning the last 24 hours. We chose 24 hours so that the sliding
window captures an entire seasonal cycle. An alternative would be a sliding
window of 7 days which covers an entire week including possible deviations on
the weekend.
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Fig. 2: Box plot depicting the distribution of the five entropy time series over
our main flow trace. The whiskers represent the maximum and minimum values,
respectively.

We normalize the prediction error of every time series by multiplying it with
a weight factor. For each of the five time series and its respective sample standard
deviation si, this weight factor is defined as shown in Equation 2.

ωi =
1

si
·max(s1, ..., s5) (2)

Accordingly, the time series exhibiting the highest sample standard deviation
is assigned a weight factor of 1.

To make the proposed ADS for network operators easier to configure, we
aggregate all five prediction errors to a single anomaly score referred to as δ.

δ =

5∑
i=1

err(x̂i, xi) · ωi (3)



A single threshold can now be configured. As soon as the current aggregated
anomaly score exceeds this threshold, an alert is triggered.

Algorithm 1 shows the entire algorithm summed up in pseudo code.

Algorithm 1 Abrupt change detection algorithm

1: Time series T = {{x, x̂, s}1, ..., {x, x̂, s}5}
2: while True do
3: for all {x, x̂, s}i ∈ T do
4: Normalized entropy xt := H0(flow attributes for i within ∆t)
5: Predicted entropy x̂t+1 := α · xt + (1− α) · x̂t
6: Prediction error ei := |x̂t − xt|
7: Standard deviation st := s(flow attributes for i within last 24 hours)
8: end for
9: for all {x, x̂, s}i ∈ T do

10: Calculate weight factors ωi := 1
s
·max({∀{x, x̂, s} ∈ T | st})

11: end for
12: Calculate anomaly score δ :=

∑n
i=1 ωi · ei

13: if δ ≥ predefind threshold then
14: Trigger alert
15: end if
16: Sleep ∆t
17: end while

The first line defines our five time series. Each time series consists of a set of
three variables: x is the actual entropy time series over a specific flow attribute, x̂
represents the entropy predictions and s stands for the sample standard deviation
over the last 24 hours. The endless while-loop spanning the lines 2 – 17 triggers
an analysis every ∆t minutes. Then, for each time series, the current entropy, the
predicted entropy, the prediction error and the standard deviation is computed
(line 3 – 8). Afterwards, the respective weight factors, one for each of the five
time series, are determined (line 9 – 11). Finally, the overall anomaly score is
computed (line 12) by summing up all the weighted prediction errors. If the
anomaly score exceeds the threshold defined by the network operator (line 13 –
15), an alert is triggered.

4.2 Choosing Parameters

Several parameters must be set for our algorithm. Each combination of parame-
ters is associated with a trade-off: High detection rates at the cost of many false
alarms or vice versa. The following enumeration lists the configurable parameters
and points out strategies to set them.

Sliding window size for entropy analysis: Small windows are very sensitive:
On the one hand, this will increase the detection rate. On the other hand,
the false alarm rate will increase too. Large sliding windows are comparably
insensitive which leads to the contrary effect.



Our sliding window spans over 5 minutes which seems to be an acceptable
trade-off.

Sliding window overlapping size for entropy analysis: An overlapping
sliding window results in more fine-grained time series. We want our system
to react as quickly as possible to abrupt changes. For this reason, we chose
to overlap the sliding window for 4 minutes. So every minute a measurement
“looking back” over the last 5 minutes is added to our time series.

Sliding window size for standard deviation: We decided to set the sliding
window size for calculating the standard deviation to 24 hours. That way,
the sliding window covers an entire seasonal cycle. Basically, we recommend
multiples of 24 hours. The next natural choice would be 7 days which covers
an entire week including possible deviations on the weekend.

Smoothing parameter α: In order to use the SES algorithm, one has to come
up with the smoothing factor α. As pointed out in more detail in [3], the
formula 1 − (1 − α)n informs about how much weight is given to the most
recent n observations. One can rearrange this formula to an equation which
provides a natural approach to choose alpha: α = 1 − n

√
(1− ω). In this

form, one can obtain α by specifying how much weight 0 < ω < 1 should be
given to the most recent n observations.
A small α (i.e. a smoother time series) is less sensitive to high amounts of
noise. We set α to 0.05 which means that the last 60 observations (i.e. the
last hour in the time series) are assigned a weight of 95%.
However, as our experiments suggested, the choice of α should depend on
the respective network. So a sound approach is to first have a look at the
entropy time series and then decide which α makes sense in practice.

5 Evaluation

The following sections cover the evaluation of our proposed algorithm. In short,
due to the lack of ground truth, we injected handmade anomalies into our flow
trace in order to evaluate our algorithm.

5.1 The Data Set

Our primary data set stems from the server network of an ISP. It contains 5 days
of unsampled unidirectional network flows: from 25th October 2010 until 30th
October 2010. The set holds a total of ∼260 million flows which means that on
average, ∼36,000 flows were received every minute. The network was more active
during day than during night times, though. The data set was anonymized [6]
but preserves a one-to-one mapping of anonymized to real IP addresses. So the
traffic distributions are not affected by the anonymization.

Figure 3 contains an entropy analysis over one day of our flow trace. The
overall anomaly score is shown as black time series at the bottom. The higher
the anomaly score, the more abrupt are the aggregated changes in the five time
series. One can see that there are a handful of events with a particularly high
anomaly score, i.e. 0.4 or higher.
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Fig. 3: Entropy time series over one day including anomaly score.

5.2 Injection of Synthetic Anomalies

A sound evaluation of an ADS requires data sets for which ground truth is avail-
able or can be established. Since we did not have any ground truth per se, we
modeled and injected synthetic anomalies into our original data set. For this pur-
pose, we used a modified version of the tool FLAME [2]. FLAME facilitates the
injection of hand-crafted anomalies into flow traces. Anomalies can be described
by Python scripts which serve as “flow generators”. We implemented two such
flow generators:

HTTP DDoS attack: The generated flows represent a synthetic middle-scale
DDoS attack launched over HTTP. The DDoS attack lasted for 11 minutes
and a total of 500 distributed hosts formed up as attackers. The victim of
the attack was a single webserver. The amount of flows generated by the
attackers represents a normal distribution since not all attackers have the
same bandwidth and can attack at the same scale. As a result from the
attack, the webserver was under very high load and could respond only to
a small fraction of HTTP requests. The DDoS attack resulted in ∼220,000
flows which were superposed over the original data set.

Horizontal network scan: The purpose of this generator was to yield flows
which represent a large-scale horizontal network scan. The attacker used
a single IP address for scanning and scanned an entire /16-network which
consists of 65,534 valid IP addresses. The purpose of the scan was to find
open TCP ports 21, i.e. running FTP daemons. The attacker did not use any
obfuscation methods such as inter-scan-delays. The scan resulted in ∼67,000
flows. Note that worm outbreaks are very similar to network scans when
looked at on the network layer: Infected computers scan for other vulnerable
hosts [8, 19].

We injected the two described anomalies into our original data set which
resulted in a new data set containing our handmade anomalies. The anomalies
were inserted at 13:00 (DDoS) and at 14:00 (Scan) on October 28th. Both dates
were randomly determined.



5.3 Analysis Results

Figure 4 shows the entropy analysis for the entire day of October 28th. The
upper diagram covers the original data set whereas the lower one holds our
injected anomalies. Again, both diagrams contain time series for all of our five
flow attributes. The black time series holding the anomaly score is the most
interesting one. In both diagrams, we highlighted particularly high anomaly
scores and labeled them from A to D. Anomaly A and B represent “natural”
anomalies which were already present in the original data set.

A B

A B
C D

Fig. 4: Entropy time series over the original (upper) and the modified (lower)
flow trace. The marked spots represent anomalies.

It turns out that anomaly A was caused predominantly by two hosts, entitled
H1 and H2. Apparently, H1 initiated thousands of HTTP connections over a
longer period of time to H2. After this communication stopped, the port time
series converged and the entropy of the IP distributions increased significantly.

Anomaly B was again caused by HTTP communication. A set of multiple
distributed hosts sent TCP segments to a single host H3. The source port of all
distributed hosts is 80 and the destination port of H3 a random high port. This
phenomenon only lasted for 5 minutes. During this time period, around 30,000
flows were sent to H3. We presume that the anomaly was caused by a spoofed
DoS attack or a misbehaving network device.

Anomaly C and D represent our handmade DDoS attack (C) as well as the
network scan (D).

We also conducted experiments with synthetic anomalies of smaller scale.
A network scan covering only a /20 network (i.e. 4,094 addresses) is almost



invisible in our data set and disappears in noise. So depending on the network
link, attacks have to reach a certain minimum scale in order to be detectable.

Eventually, if the scale of an attack gets large enough, anomalies will show
up in widely used flow statistics such as “bytes per minute”. However, this is not
the case with the four anomalies we analyzed. Figure 5 illustrates three popular
flow statistics: bytes, packets and flows per minute. The diagram was built out
of the same flow trace as Figure 4. The anomalies (again, labeled from A to D)
disappear in noise.
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Fig. 5: Time series of three popular flow statistics; the natural and injected
anomalies disappear in noise.

5.4 Evasion and Counteractive Measures

For an attacker, the obvious way to evade our detection algorithm is to launch
an attack in a slow but continuously increasing way to “stay under the radar”
of our algorithm. E.g., a large-scale DDoS-attack against a web server could be
started by sending only a dozen HTTP requests per second. Then, the scale
can be increased more and more up to millions of requests per second. The
algorithm will not detect the attack if the observed changes between the single
measurement intervals are not significant enough.

Our algorithm is capable of detecting such stealth attacks too if applied to
a larger time scale. What might be invisible when looking at a time scale of
minutes can become obvious on a time scale of hours or days.

5.5 Scalability

Finally, we want to verify our claim that the proposed approach is suitable for
analyzing large-scale networks. We implemented a prototype in the form of a
patch for the NetFlow analysis tool nfdump [9] (for entropy calculation) and as
plugin for the corresponding frontend NfSen [10] (for visualization).



It turned out that our implementation is able to analyze up to 940,000 flows
per second.1 On average, our ISP flow trace contains 600 flows per second (with
peaks of up to 2000 flows/s) whereas the uplink of our university produces around
70 flows/s (with peaks of up to 250 flows/s). Accordingly, our implementation
is not even close to its limits.

6 Conclusion

In this paper, we proposed an algorithm for detecting abrupt changes in network
entropy time series. Attacks such as DDoS, worms and scans often lead to such
abrupt changes. The main idea of the algorithm is to continuously conduct short-
term predictions and determine the difference between the predictions and the
actual observed entropy value. The higher the difference, the more abrupt the
change is.

Our evaluation suggests that the algorithm performs well and is robust
against background noise. However, it is important to note that the attacks
have to reach a certain scale in order to be detectable. Small-scale DDoS attacks
might be invisible on a high-speed network link. We believe that our proposed
algorithm is a valuable tool for network operators. It is straightforward to con-
figure, fast to deploy and does not need training data.

There is much room for future work. First of all, we noticed that the root
cause identification of anomalies is often a nontrivial task. The cause (e.g. a SSH
brute force attack occurred) can be quite subtle and difficult to find. It would
be of great help if network operators were assisted by automated tools [14]. In
addition, future research could cover the adaption and testing of the algorithm
on a larger time scale in order to detect slowly but continuously emerging attacks
which would otherwise evade our system.
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