
An On-line Learning Statistical Model to Detect
Malicious Web Requests

Harald Lampesberger1,2, Philipp Winter1, Markus Zeilinger1, and Eckehard
Hermann1

1 Upper Austria University of Applied Sciences, Department Secure Information
Systems, Softwarepark 11, A-4232 Hagenberg, Austria

2 Johannes-Kepler-University Linz, Christian-Doppler Laboratory for Client-Centric
Cloud Computing, Softwarepark 21, A-4232 Hagenberg, Austria

h.lampesberger@cdcc.faw.jku.at

Abstract. Detecting malicious connection attempts and attacks against
web-based applications is one of many approaches to protect the World
Wide Web and its users.
In this paper, we present a generic method for detecting anomalous and
potentially malicious web requests from the network’s point of view with-
out prior knowledge or training data of the web-based application. The
algorithm assumes that a legitimate request is an ordered sequence of
semantic entities. Malicious requests are in different order or include en-
tities which deviate from the structure of the majority of requests. Our
method learns a variable-order Markov model from legitimate sequences
of semantic entities. If a sequence’s probability deviates from previously
seen ones, it is reported as anomalous.
Experiments were conducted on logs from a social networking web site.
The results indicate that that the proposed method achieves good detec-
tion rates at acceptable false-alarm rates.

Key words: intrusion detection, anomaly detection, on-line learning,
Markov model, web security

1 Introduction

The popularity of the Web is continuously rising and our daily lives are more
and more dependent on this source of information. Accordingly, the Hypertext
Transfer Protocol (HTTP) has evolved to one of the most employed application
layer protocols in the Internet. But with increasing global dependence on the
Web, attackers are even more interested in tampering with those systems.

The paper is structured as follows: The remaining introduction deals with
HTTP, its security challenges and related work in this area. Section 2 explains
the concept of the proposed anomaly detection method. Section 3 outlines imple-
mentation details, evaluation results are listed in Section 4 and Section 5 draws
the conclusion.

2 H. Lampesberger et al.

1.1 HTTP and Web Security

The HTTP protocol [11] defines stateless and generic exchange of information.
The communication is initiated by a client who requests a specific resource,
identified by the Unified Resource Identifier (URI) path, from the server. The
response assembles server status codes, meta information and possible entity
content.

A fundamental security problem of web-based applications is that the client is
out of the application’s scope of control. The protocol was originally designed for
static resources and stateless interaction, but today’s web applications employ
it for dynamic content and stateful sessions. Consequently, data sent from the
client must be somehow interpreted by the server. Semantic client data can be
found in the request-URI path, header fields and possible request entity content.

Request-URI Path The path is a hierarchically structured sequence of string
segments and an optional query component. The grammar is defined in [5] and
traditionally, the path references a static resource, or in dynamic web applica-
tions a content generating process. A segment only allows a subset of printable
characters; others must be escaped by using the URI percent-encoding.

The ’?’ character introduces the query component of a path and parameters
are supposed to be in field-value pairs. But real-world implementations tend
to break this convention because expressive path names in URLs are preferred
by developers and users. This is called URL Rewriting and a representative
example is the widely used Apache web server module mod_rewrite [2] which
allows mapping of path segments into queries. As a result, a client can never
conclude from a path whether segments are interpreted as static resources or
parameters in a web-based application.

Request Headers In a request, headers represent meta data from the client in
an unordered field-value structure. For example, headers inform the server which
kind of content and encoding is understood by the client. The best example
for client data processed by the web application is the so-called cookie. Many
applications use the cookie to track states in the stateless HTTP protocol.

Request Entity Content A typical GET request can transport parameters
in the URI path, but the size of the query part is restricted by server’s imple-
mentation. For high-volume transmissions or forms, the POST method allows
query-style or MIME-encoded data in the request entity content. Additional
headers are necessary to describe type and length of this entity content.

Weaknesses Wrong handling of client data in any function of the web appli-
cation introduces a security weakness which can probably be exploited by an
attacker. To name a few, attack vectors like buffer overflows, SQL or code in-
jections, Cross-Site Scripting, Cross-Site Request Forgery or HTTP parameter
pollution emerge from few common pitfalls. These classic flaws are gathered in
the Common Weakness Enumeration database [22] and, in this paper, attacks

An On-line Learning Statistical Model to Detect Malicious Web Requests 3

Legitimate Request:
GET /fotos.php?action=view HTTP/1.1

Code Injection:
GET /fotos.php?action=http://195.33.221.4:8081/bot.txt? HTTP/1.1

SQL Injection:
GET /userportal.php?id=4518-999.9+union+select+0-- HTTP/1.1

Cross-Site Scripting:
GET /fotos.php?action=search&album=%22%2F%3E%3Cscript%3Ealert%281%29
%3B%3C%2FScript%3E HTTP/1.1

Path Traversal:
GET /images/../../../../../../../../../../etc/passwd HTTP/1.1

Fig. 1. Examples for legitimate and malicious URI paths in HTTP requests.

are grouped by their common weakness. Some examples are given in Figure 1
for a better understanding.

Protecting a web-based application implicitly protects its users. Drive-by
downloads to create botnets are on the rise as noted by Provos et al. [25]. In
addition to disturbing the service availability or stealing information from a
high-volume web site, an attacker might consider planting drive-by malware to
infect visitors.

1.2 Intrusion Detection

Another approach in protecting web-based applications, besides writing robust
code, is the domain of payload-based intrusion detection systems (IDS) to en-
able prevention mechanisms or early warning. IDS techniques can be distin-
guished into misuse detection and anomaly detection based on the style of de-
tection. While misuse detection relies on proper signatures of malicious behavior,
anomaly detection tends to use methods such as machine learning or statistics
to construct a profile of normal behavior and report deviating interactions as
anomalies.

As stated by Sommer and Paxson [29], both concepts are challenged in dif-
ferent ways. The detection performance of misuse detection completely depends
on currentness and coverage of signatures, but false-alarm rates are accordingly
low. Anomaly detection is prone to costly false-alarm rates, but it is more prob-
able by design to recognize novel attacks. To succeed in real-world scenarios,
anomaly detection must consider a) the variability of input data, b) the lack of
training data, c) a very high cost of errors, d) the difficulty of sound evaluation
and e) descriptiveness of detection results.

Detecting malicious web requests is challenging. Encodings, especially poly-
morphic ones as used in attack frameworks like Metasploit [20], make it almost
impossible to induce valid signatures for misuse detection. Additionally, web ap-
plications are very dynamic and constantly change over time. This concept drift
[19] handicaps the process of learning normal behavior in anomaly detection.

4 H. Lampesberger et al.

1.3 Related Work

Anomaly detection in network data is not new. Over the past years, different
strategies for extracting representative features from network payload were pre-
sented. The payload-based anomaly detector (PAYL) by Wang and Stolfo [34]
uses byte frequencies for payload profiling. Anagram [33] is an advancement of
PAYL using n-grams instead of single byte frequencies. Perdisci et al. [24] fur-
ther pursue this approach and introduce McPAD, a method based on 2ν-grams.
PAYL, Anagram and McPAD are rather generic concepts to analyze applica-
tion layer network traffic, but their evaluation focuses on HTTP. Also, the three
methods rely on training data sets.

Kruegel and Vigna [16] introduce the first detection system focused on web
applications. It uses a linear combination of six different anomaly detection mea-
sures like attribute character distributions, structural information or attribute
lengths. This concept establishes the foundation for follow-up research: group-
ing similar anomalies [26], addressing concept drift [19] and dealing with scarce
training data [27].

Ingham et al. [14] define an approach where finite automaton representations
are learned from HTTP tokens. Another method customized to protocol syntax
using an attributed token kernel in One-Class Support Vector Machines is shown
by Duessel et al. [9]. Spectogram is a model of multiple Markov chains proposed
by Song et al. [30]. Ma et al. [18] define a model based on compression for web
anomaly detection which tolerates concept drift to a certain degree. The HTTP
reverse proxy TokDoc, presented by Krueger et al. [17], uses an ensemble of
anomaly detection methods to detect, and automatically repair, malicious web
requests.

All previously listed algorithms achieve good evaluation results, but they de-
pend on training data. Especially for a fast-paced large-scale web application it
is hardly possible to create an up-to-date and representative training data set.
Görnitz et al. [12] realize this problem and present an active learning strategy
based on methods such as PAYL, Anagram and McPAD. Their solution actively
queries for labels to reduce the need for training, but context drift is not ad-
dressed.

1.4 Scope of This Work

As outlined in 1.1, a client or network device cannot conclude which elements of a
web request will be processed in weakness-prone functions of the web application.
Furthermore, URL Rewriting is not mentioned in previous work, but it is actively
used in practical scenarios. So, RFC-compliant queries in URI paths cannot be
assumed. The only possible assumption is that during normal operation of a
web site, the application is probably receiving more legitimate web requests
than malicious ones.

This paper explores the question of whether potentially malicious web re-
quests can be detected from the network’s point of view without prior knowl-
edge at decent performance levels. An exemplary implementation scenario is a

An On-line Learning Statistical Model to Detect Malicious Web Requests 5

network-based IDS system for providers to monitor high-volume web sites and
provide early warning mechanisms. Considering Sommer and Paxson’s conclu-
sions [29], the following requirements were defined:

– No explicit training data is necessary,
– The model considers concept drift of the web application,
– The model accepts URL Rewriting,
– False-alarm rates are minimized,
– Details on an alert’s cause are available and
– Throughput performance is kept in mind.

2 Methodology

Our approach is formed by two assumptions:

– A legitimate web request is a series of semantic entities in specific order and
– Normal requests are more probable than malicious ones.

Within a web request, the data, especially the URI path, is in some kind of
order as the result of design principles. For example, if the request is processed
as stream and the first bytes indicate request method POST, then entity content
is to be expected. It might come natural to say that a web request is Markovian.
A conjecture of our detection method is that malicious requests have unexpected
order of data or include entities which differ from the common structure. Con-
sequently, Markov modeling seems to be a suitable approach for prediction.

It is important to mention that web-based applications actually use random
strings in requests, for example session identifiers, random file names of im-
age thumbnails, random transaction codes and so on. If transition probabilities
purely rely on single byte frequencies, a single Markov model will get falsified by
random strings. But Markov chains and Hidden Markov Models have success-
fully been employed for modeling web requests [19, 16, 26, 30, 18, 17, 27]. These
concepts use multiple models to cope with high-entropy content.

Our method was inspired by Begleiter et al. [4] and their work on sequence
prediction using compression models. The core idea is to deduce a variable-
order Markov model (VMM) from legitimate web requests and use this model to
classify novel web requests based on their probability. To increase robustness and
handle high-entropy content, the grammar of HTTP is exploited to transform
a web request into a sequence of abstract symbols beforehand. A novel web
request is classified whether it is normal or not by comparing its probability to
the distribution of ones. Therefore, the algorithm maintains a sliding window
over recent sequence probabilities.

Based on Vovk et al. [31, pp. 3–7], we consider learning in our scenario as
transductive on-line learning : Instead of inducing a general rule from training
data, samples are presented one by one to the model, it predicts the sample’s
label and adds it to a bag of training examples. In our case, a so-called sample
equals a web request and the VMM represents the bag of training examples.

6 H. Lampesberger et al.

Each new prediction relies on previously seen samples, no induction is needed
and the quality of predictions should improve over time. Finally, the model
predicts whether a sample is normal or anomalous.

On-line learning requires somehow feedback of the truth. Following Vovk’s
definitions [31, p. 107], our scenario has two so-called lazy teachers who occa-
sionally reveal the true label of a sample. The first lazy teaching mechanism is
a constrained randomness assumption: the majority group of similar samples is
probably normal. The second lazy and slow teacher is the human expert who
works with and maintains the system. The expert intervenes after possible de-
lay if false positive or false negative detections were realized. To sum up, our
proposed algorithm processes a web request in four steps:

1. The web request is converted into a sequence of symbols,
2. A VMM estimates a probability of the sequence,
3. The sequence probability is assigned to a confidence interval in the sliding

window probability distribution and
4. Depending on the confidence interval, the sequence is learned, ignored or

reported.

2.1 A Request is a Sequence of Symbols

RFC 2616 [11] defines the grammar of the US-ASCII-oriented HTTP. The fun-
damental grammar entity is one byte. A class of characters called separators has
special meaning in the protocol. So, in context of this work, a symbol σ ∈ N0

16

is the statistical representation of bytes between two separators. These 16 occur-
rence counters of a symbol are a computationally optimized heuristic to model
the appearance of a variable-length string token in fixed-length memory while si-
multaneously handling high-entropy content. The counter definitions are based
on HTTP character classes defined in the RFC and some additional counters
capture structural characteristics of the content:

σ ⇒

σ[0] amount of printable ASCII characters,
σ[1− 4] lexical letter index ∈ {a..z, A..Z} mod 4,
σ[5− 6] digit index ∈ {0..9} mod 2,
σ[7] uppercase letters ∈ {A..Z},
σ[8] lowercase letters ∈ {a..z},
σ[9] US-ASCII control characters,
σ[10] protocol-specific bytes ∈ {CR LF SPACE TAB},
σ[11] path-specific characters ∈ {./},
σ[12] protocol separators ∈ {?&;()<>@,:[]{}=\},
σ[13] single and double quotes,
σ[14] percent character,
σ[15] non-US-ASCII character.

(1)

A web request is transformed into an n-tuple or sequence of symbols qn1 =
(σ1, σ2, . . . , σn). For precise tokenization of URI paths, the class of separators is
split up in pre- and post-separators:

An On-line Learning Statistical Model to Detect Malicious Web Requests 7

pre-separators = {SPACE TAB},
post-separators = {/?&;()<>@,:"[]{}=\}. (2)

In a data stream, the observation of a pre-separator triggers the allocation of
a new symbol in the sequence before the observed byte increments the occurrence
counter in the symbol. Given the previous definitions, Figure 2 shows part of
an exemplary HTTP GET request and how it is transformed into a sequence of
symbols.

GET /index.php?article_id=10&clang=0 HTTP/1.1

GET / index.php? article_id= 10& clang= 0 HTTP/ 1.1

S S S S S S S S S1 2 3 4 5 6 7 8 9

Fig. 2. Transformation of a web request data into a sequence of symbols.

The dynamic alphabet A consists of all the symbols the anomaly detection
model is currently aware of. The initial alphabet is empty and as a result of
learning, symbols are added or removed over time. For prediction, the symbols
of the web request are mapped to similar symbols in A if possible. This mapping
function Φ requires a metric to compare symbols. A similarity measure between
two sets is the Tanimoto coefficient τ [13, p. 398] which estimates the intersection
of two symbols:

τ(σ1, σ2) =
σ1 · σ2

‖σ1‖2 + ‖σ2‖2 − σ1 · σ2
. (3)

Let TA be the similarity threshold for alphabet A and also an anomaly de-
tection model parameter. Two symbols σ1 and σ2 are considered independent if
τ(σ1, σ2) > TA. So, the mapping function Φ is defined as:

Φ(σ,A, TA) =

{
arg max

ν∈A
τ(σ, ν) if ∃ν ∈ A : τ(σ, ν) > TA,

σ otherwise.
(4)

2.2 Prediction by Partial Matching

The idea of Prediction by Partial Matching (PPM) is to predict the next symbol
σ ∈ A in a stream based on the previously seen symbols, the so-called context
s ∈ An of order n. Probability estimates are based on symbol counts in the data.

Cleary and Witten [7] present PPM as a concept of statistical modeling for
lossless compression. PPM belongs to the group of variable-order Markov mod-
els which are able to capture both large and small order Markov dependencies
in observed data, as stated by Begleiter et al. [4]. To handle the zero-frequency

8 H. Lampesberger et al.

problem when novel symbols are encountered, PPM provides the escape and ex-
clusion mechanisms. In this work, exclusion is ignored due to the computational
overhead and escape follows ‘Method C’ proposed by Moffat [23].

PPM requires an upper Markov order bound D for VMM construction. A
data structure to model PPM is a trie of depth D + 1. A trie node references
a symbol from alphabet A and maintains a frequency counter. Each path from
root to node represents a subsequence in the already processed stream and the
node’s count indicates, how often this subsequence appeared. Figure 3 shows an
exemplary trie for Markov order D = 2 constructed from a single sequence.

root

a(3)

a(1)

b(1)

b(2)

c(2)

b(4)

b(1) c(2)

b(1) c(1)

c(3)

a(1)

a(1)

b(1)

b(1)

c(1)

a(1)

Fig. 3. PPM trie (order D = 2) for simplified sequence q101 = abccaabcbb.

Let k be the length of the current context and k ≤ D. Estimating the proba-
bility P̂ of symbol σ considering its context s follows a recursive relation, where
s′ is a one-symbol-shorter context and k < 0 ends the recursion:

P̂ (σ|s) =

{
P̂k(σ|s) if sσ exists in the VMM,
P̂k(escape|s) · P̂ (σ|s′) otherwise.

(5)

Let As be the specific alphabet of context s and N(sσ) be a count value
of the node in context s referencing symbol σ. Then the probability estimates
based on ‘Method C’ [23] are:

P̂k(σ|s) =
N(sσ)

|As|+
∑

σ′∈As

N(sσ′)
if σ ∈ As , (6)

P̂k(escape|s) =
|As|

|As|+
∑

σ′∈As

N(sσ′)
otherwise. (7)

The escape probability depends on the entropy within a specific context and
the alphabet size is not assumed finite. The following examples based on Figure
3 are for a better understanding of the estimation process: The probability that
a sequence starts with b is P̂ (b) = 4

3+10 = 0.308. The chance that c occurs after
’ab’ is P̂ (c|ab) = 2

1+2 = 0.667. But a after ’bc’ has not been seen before, so
P̂ (a|bc) = P̂ (escape|bc) · P̂ (a|c) = 2

2+2 ·
1

3+3 = 0.083.
Finally, the average probability of a sequence qn1 is the arithmetic mean of

all its symbol probabilities:

An On-line Learning Statistical Model to Detect Malicious Web Requests 9

P̂ (qn1) =
1

n

n∑
i=1

P̂ (qi|qi−1i−D) . (8)

In context of web-based applications, a perfect VMM that learned all possible
web requests delivers approximately high mean probability scores for legitimate
sequences. A malicious web request will likely contain symbols that are unknown
to the VMM’s alphabet or symbol arrangements in an unexpected order. This
results in a low mean probability score of the sequence. The distribution of
probabilities depends on the web application and its dynamics. Accordingly, a
static threshold for classification of outliers is insufficient.

2.3 Detecting Outliers

The proposed outlier detection method assumes that mean sequence probabilities
of all legitimate web requests are somehow similar distributed in a perfect VMM.
Different quantiles of the estimated distribution represent confidence intervals.
Outliers are found in intervals distant to the mean.

Algorithm 1 Sliding window mean and sample variance estimator in O(1).
Require: wsize > 0
empty queue W ← []
sum-of-squared residuals M2 ← 0
fill count n← 0
P̄ ← s2 ← 0
while Pnew ← Input do

if n < wsize then
n← n+ 1

else
Pold ← Dequeue(W)
δ ← Pold − P̄
P̄ ← P̄ − δ/(n− 1)
M2 ←M2 − δ ∗ (Pold − P̄)

end if
δ ← Pnew − P̄
P̄ ← P̄ + (δ/n)
M2 ←M2 + δ ∗ (Pnew − P̄)
Enqueue(W,Pnew)
if n > 1 then
s2 ←M2/(n− 1)

end if
print P̄ , s2{mean and sample variance of previous wsize entities}

end while

The bounded probability space [0, 1] is supported by the Beta distribution
Beta(α, β). The parameters for this distribution are estimated from the mean

10 H. Lampesberger et al.

P̄ and sample variance s2 of recent sequence probabilities by the method-of-
moments [10, p. 40]:

α̂ = P̄

(
P̄ (1− P̄)

s2
− 1

)
, β̂ = (1− P̄)

(
P̄ (1− P̄)

s2
− 1

)
. (9)

Due to numerical and complexity boundaries, it is challenging to calculate
the mean and sample variance in a streaming scenario, where each new sequence
causes an update of the values. Maintaining a sliding window over the recent
wsize sequence probabilities reduces the computational complexity. Also, a slid-
ing window forgets values over time and allows better adaption to concept drift
of the underlying application. The size of the sliding window affects how strong
the mean and sample variance are affected by outliers in the data.

For computational efficiency, the algorithm for one-pass mean and sample
variance estimation proposed by Welford [35], and recommended by Knuth [15,
p. 216], has been modified for sliding windows. Algorithm 1 updates the sliding
window mean P̄ and sample variance s2 in constant time. All probability values
stay in a FIFO queue for wsize updates and before discarding them, their mo-
ments are withdrawn from the mean and sample variance to attain the sliding
window.

The confidence cq of a web request’s mean sequence probability P̂ (q) is esti-
mated by the Beta distribution’s cumulative distribution function:

cq = IP̂ (q)(α̂, β̂). (10)

We define three confidence thresholds as model parameters: base confidence
Tbase, warn confidence Twarn and alert confidence Talert. As a result, four con-
fidence intervals are formed in the distribution and Figure 4 outlines them. A
web request is classified according to its confidence cq:

classify(cq) =

Normal (learning) if cq > 1− Tbase,
Normal (ignore) if 1− Tbase > cq > 1− Twarn,
Anomalous (warn) if 1− Twarn > cq > 1− Talert,
Anomalous (alert) otherwise.

(11)

To sum up outlier detection, a Beta probability distribution over previous
VMM prediction results is estimated. Depending on a web request’s confidence,
the grade of abnormality is known, it is assigned to one of four confidence inter-
vals and further learning or reporting actions are taken.

2.4 On-line Learning Strategy

The VMM requires learning of legitimate sequences to reduce VMM escapes and
to increase prediction precision over time. Better predictions result in higher
mean and lower sample variance, the distribution and its confidence intervals
get more and more distinct and anomaly detection performance improves.

An On-line Learning Statistical Model to Detect Malicious Web Requests 11

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

1

2

3

4

5

6

7

D
en

si
ty

Tbase

Twarn

Talert

Exemplary Confidence Regions

ig
no

re
 in

te
rv

al

w
ar

n
in

te
rv

al

al
er

t i
nt

er
va

l

le
ar

ni
ng

 in
te

rv
al

Fig. 4. Exemplary Beta probability-density function graph where the four confidence
intervals (alert, warn, ignore and learning interval) are marked.

Learning The first lazy teacher in the on-line learning scenario is a constrained
randomness assumption: most of the web requests are probably normal. Conse-
quently, sequences in the learning interval are automatically fed back, the VMM
trie grows and new symbols are added to alphabet A.

The second lazy and slow teacher is a human expert who eventually recognizes
a false positive or false negative with possible delay. In the case of false positive,
the sequence and novel symbols are added into the VMM trie and alphabet.
The according node counters are incremented until the sequence resides in the
learning interval. If a false negative detection is corrected, the trie nodes related
to the sequence are decremented or removed from the trie. Unreferenced alphabet
symbols are deleted.

Especially during the first hundred web requests, a malicious attempt may
unintentionally be learned. Also because of concept drift, the web-based applica-
tion might change, new resources appear or old resources fade to exist. The web
application matures and the detection model must forget outdated information
over time too.

Pruning Due to concept drift and numerical limits in computers, the VMM
trie and its counters cannot grow indefinitely. The model parameter Tprune is a
threshold for the most frequent node counter in the trie. If the most frequent
node exceeds Tprune, pruning is performed. All node counters in the trie are
integer divided by two, zero nodes or branches are removed and unreferenced
symbols are deleted from the alphabet.

So, VMM escape probabilities increase again, the model is able to adapt to a
certain degree of concept drift and malicious sequences learned by mistake will
be dropped over time.

To sum up all introduced model parameters, the proposed anomaly detection
model M is parameterized by:

M〈TA, D,wsize, Tbase, Twarn, Talert, Tprune〉 .

12 H. Lampesberger et al.

3 Implementation

The proposed methodology is implemented in two independent prototypes with
the same algorithmic background: an off-line log file analyzer for performance
evaluation and a passive network analysis tool. For performance reasons, all
implementations are written in C and the efficient trie data structure follows the
recommendations from Salomon [28, pp. 150–155].

3.1 Network Operation

The network prototype is built upon Libnids [36], a library for payload inspection
of TCP sessions in live network traffic or recordings. Due to full decoding of TCP
sessions, the library is resistant to fragmentation attacks. Furthermore, it allows
intervening in established TCP sessions by sending forged reset segments to both
communication partners. Reset segments are an unreliable third-party method
for killing connections because of possible network delays, but it still gives this
prototype some intrusion prevention abilities.

A B CB A A A C B C A BB B IP Packets

TCP Stream: A <> Server Filtering & TCP DecodingTCP Stream: B <> Server

CC

Extract Sections

Markov Model & Outlier Detection

(Normal | Warning | Alert)

Fig. 5. Analysis concept for network data processing.

Figure 5 outlines the concept of network data processing. Libnids decodes
TCP sessions for a configured subset of destination hosts, other sessions are ig-
nored. Packet payload is handed to the Protocol State Machine (PSM). The PSM
is a TCP session-specific deterministic finite automaton, where state transitions
are triggered by payload byte tokens. A transition also performs user-specified
actions. This includes starting and finalizing of anomaly detection, reporting,
killing connections or canceling further analysis of the session.

The PSM states, transition tokens and actions are defined in XML by the
user and Aho-Corasick pattern matching [1] enables the search for these tokens
in the payload stream. So, the computationally intensive anomaly detection can
be limited to weakness-prone sections in the protocol, for example the HTTP
request and response headers.

A TCP session is reported if it is anomalous. The raw analyzed data and
prediction results are kept in a ring-buffer for a certain amount of time. In case
of a detection error, an expert can see which symbols in the payload stream are
responsible for the anomaly.

An On-line Learning Statistical Model to Detect Malicious Web Requests 13

At last, all anomaly detection model parameters are changeable during op-
eration. The network prototype features an XML-RPC interface for parameter
modifications or teaching of false positive or false negative detections.

4 Experiments

For evaluation of detection performance, we assume a binary classification case
where legitimate requests represent class Normal and warnings or alerts are
considered as class Attack. A labeled data set is required to construct a confu-
sion matrix as shown in Table 1. The values in the matrix are mandatory for
estimating performance metrics.

Table 1. Confusion matrix for the binary classification case.

Actual
Attack Normal

Predicted Attack True Positive (TP) False Positive (FP)
Normal False Negative (FN) True Negative (TN)

The Receiver Operator Characteristic (ROC) curve and its area under the
curve (AUC) are commonly used metrics to describe detection performance of
a classification algorithm. But in the intrusion detection area, normal and ma-
licious examples are not equally distributed. So, false positives cause a much
higher cost and impact in the IDS area, as already shown by Axelsson [3]. We
assume that ROC is not an optimal choice in this case.

Performance evaluation in this paper uses the metrics Precision and Recall
as recommended by Davis and Goadrich [8] for skewed data sets. For intrusion
detection, Recall is equivalent to detection rate and Precision indicates how
reliable the detections are. The Precision-Recall (PR) curve and its area under
the curve (PR-AUC) give better information on the algorithm’s performance in
a scenario, where examples are not equally distributed. Also, Precision and the
false positive rate (FPR) are interdependent. Maximizing Precision implicitly
minimizes the FPR.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, FPR =

FP

FP + TN
. (12)

In PR space, a perfect algorithm has maximum Precision for the complete
Recall range, the curve is in the upper-right corner and PR-AUC = 1. The
PR-AUC represents the capability of an algorithm to correctly separate the two
classes in the binary classification case.

4.1 Evaluation Data

Realistic data is mandatory for sound evaluation. As logs contain a part of the
web request, the presented evaluation results are based on anonymized web site

14 H. Lampesberger et al.

log files. A data set is neither partitioned for training nor ordered, the analysis
starts with an empty model and the first sample, and ends with the last sample
in the data set. So, these experiments are kept as realistic as possible.

Manifesting attacks are planted randomly in the data sets. Table 2 shows
a pool of 57 unique attack vectors and their CWE classes. Custom attacks are
adapted to the web application in use; others are referenced either by their
Common Vulnerability and Exposures (CVE) [21] identifier or worm name.

Table 2. Unique CWE weaknesses for a total of 57 attack vectors.

CWE Name Num CVE or Other References
20 Input Validation 16 worm:Nimda worm:CodeRed
22 Path Traversal 3 custom:2 2010-2334
78 OS Command Injections 5 custom:3 2005-0116 2005-2847
79 Cross-Site Scripting 8 custom:5 2010-0804 2010-2356 2010-4366
89 SQL Injection 9 custom:3 2005-1810 2008-0397 2008-1982

2009-0968 2010-3601 2011-0519
94 Code Injection 5 custom:3 2005-0511 2007-1599
119 Buffer Errors 11 1999-0874 2001-0241 2001-0500 2003-0109

2003-1192 2004-1374 2004-1561 2004-1134
2006-1148 2006-5216 2007-0774

CMS Data Set The data is from a PHP-based content management system
named Redaxo and samples were collected within several months. The original
data contains 108 malicious attempts, basically automated scans and code in-
jections. The final set consists of 3,279 log lines where additional 29 attacks are
added.

CACTI Data Set Samples are from the web front-end of a Cacti monitoring
solution deployed in a hosting environment and were collected within approxi-
mately one month. There is one code injection attempt in the original data and
it is free of scanning events. The final set with planted attacks has 25,057 request
samples where 126 requests are malicious.

SOCIAL Data Set The log data is from a social networking site which is a
hybrid solution of different web applications. From the analyst’s point of view,
the data is a worst-case scenario because there is a) concept drift, b) user data
like events or names in the URI path, c) URL Rewriting, d) lots of random data
like names of image thumbnails and e) an advertising system that transmits the
encoded referee URL within the URI path.

The original set has 12,515,970 log lines and contains 1,922 attacks where
1,392 are scanning attempts. Also, 115 suspicious requests are the result of a
JavaScript fault in the application and marked as CWE-0 in this paper. This data
was collected in a timespan of about two weeks. The final data set for evaluation
has 12,528,513 samples where a total of 14,465 are considered anomalous.

An On-line Learning Statistical Model to Detect Malicious Web Requests 15

Table 3. Distribution of weaknesses in the data sets.

CWE 0 20 22 78 79 89 94 119 200 total fraction
CMS 0 7 1 2 6 6 58 5 52 137 4.178%

CACTI 0 26 7 18 30 15 8 22 0 126 0.503%
SOCIAL 115 3464 611 1137 1794 2076 1416 2460 1392 14465 0.115%

4.2 Results

To keep experiments as realistic as possible, we assume that a virtual expert gives
feedback to the algorithm occasionally. This expert randomly recognizes 66.6%
of false positives and 10% of false negatives and triggers a learning function. All
experiments were performed on one core of a consumer-grade Intel i5-760 CPU.

The advantage of the chosen scenario is that it is oriented on practical deploy-
ment. Due to the constant on-line learning and varying detection performance,
results cannot be directly compared to solutions that are pre-trained on existing
training data.

CMS Results The CMS data set is a toy example to visualize outlier detection
and learning. Figure 6 shows the time-series of evaluated samples. Within the
first 500 requests, the confidence intervals stabilize. As visible at about sample
1,000, only few values are in the sliding window, the distribution is not yet robust
against outliers.

A model with parameters 〈0.7, 2, 10000, 0.99, 0.999, 0.9999, 50000〉 minimizes
false positives to one and achieves Recall = 97.08% and Precision = 99.25%. The
final model has 119 trie nodes, alphabet size |A| = 15 and reaches throughput
of 91,083 logs/second due to the simpleness of the underlying web application.

0 500 1000 1500 2000 2500 3000
Sample Id

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Probability Distribution of Samples

TP
FP
TN
FN
Tbase

Twarn

Talert

Fig. 6. Time-series of sequence probabilities and evolution of confidence intervals in
the CMS data set.

16 H. Lampesberger et al.

CACTI Results This data set is more realistic and performance curves are dis-
played in Figure 7. Here, Recall = 92.06% and Precision = 92.8% are achieved
by parameters 〈0.82, 2, 10000, 0.995, 0.99995, 0.99995, 10000〉, only nine false pos-
itives take place in the simulated timespan.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

0.95

c
=

0
.9

9
99

9

c
=

0.
9
99

9
5

Precision-Recall Curve

PR−AUC=0.957

(a) PR curve.

0 5000 10000 15000 20000 25000
Sample Id

0

1

2

3

4

5

6

7

8

9

Cu
m

ul
at

iv
e

FP
 E

rr
or

s/
Tr

ai
ni

ng
s

0

2

4

6

8

10

Cu
m

ul
at

iv
e

FN
 E

rr
or

s/
Tr

ai
ni

ng
s

Cumulative Errors and Trainings

FP
FP trained
FN
FN trained

(b) Cumulative error and training curves.

Fig. 7. Performance metrics for the CACTI data set.

Figure 7(a) outlines the PR curve and two different confidence thresholds are
marked. It is visible that an increased threshold also increases the precision at
the expense of detection rate. The cumulative curves in Figure 7(b) show that
false negatives only occur in the initial phase and after about sample 13,000 the
growth of false positives stagnates. This stagnation indicates that the statistical
model adepts to the data. After the last sample processed, the model has 225 trie
nodes, alphabet size |A| = 20 and still achieves throughput of 65,083 logs/second.

SOCIAL Results The last data set represents the worst case experiment
and resulting performance curves are shown in Figure 8. A model with pa-
rameters 〈0.8, 4, 20000, 0.995, 0.99995, 0.99995, 5000000〉 achieves the best per-
formance with Recall = 74.15% and Precision = 93.76%. A total of 714 false
positives yield FPR = 5.71 · 10−5. The two least-recalled classes of weaknesses
are scanning attempts and the already mentioned JavaScript fault.

Figure 8(b) outlines, that most false positive detections take place in the
initial phase and growth decreases over time. Due to the complexity of this web
application, the final model has 19,650 trie nodes, alphabet size |A| = 100 and
permits throughput of 29,200 logs/second.

To sum up, the results of all three data sets are promising considering the
on-line scenario and evaluation data. Also, the search for optimal performance
has shown that initial parameters 〈0.7, 2, 10000, 0.99, 0.9999, 0.9999, 500000〉 are
a good start. For each data set there are several parameter combinations with
comparable performance results and the presented ones in this paper maximize

An On-line Learning Statistical Model to Detect Malicious Web Requests 17

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

0.95

c
=

0
.9

9
9
99

9

c
=

0
.9

9
9
95

c
=

0
.9

9
9

Precision-Recall Curve

PR−AUC=0.817

(a) PR curve.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Sample Id 1e7

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e

FP
 E

rr
or

s/
Tr

ai
ni

ng
s

0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

FN
 E

rr
or

s/
Tr

ai
ni

ng
s

Cumulative Errors and Trainings

FP
FP trained
FN
FN trained

(b) Cumulative error and training curves.

Fig. 8. Performance metrics for the SOCIAL data set.

throughput. The parameter TA has direct impact on the size of the alphabet
and accordingly, the throughput performance.

4.3 Evasion Strategies

The proposed concept relies on statistical features collected over time to detect
deviating web requests. Due to the nature of the problem domain, an attacker
with detailed knowledge about the algorithm might be able to evade detection
under certain conditions. Three potential evasion strategies, which apply to the
proposed algorithm, have been studied in theory.

Initial Phase Attack During the initial phase of deployment, the algorithm might
unintentionally learn an attack. If this attack keeps undetected and similar at-
tacks occur regularly, the algorithm will assume them as normal too. In the best
case, the attack is a single incident and the pruning mechanism will clean the
VMM and symbol alphabet over time. In the worst case, the web application
constantly receives a high amount of similar malicious requests. This scenario
needs lower Tbase and Tprune thresholds to limit the feedback of sequences into
the VMM. As a side-effect, these parameters will produce more false positive
detections and require more human expert feedback, especially during the initial
phase.

Mimicry Attack A skilled attacker might be able to craft malicious data which
undergoes detection [32]. The presented algorithm has shown to be resistant
against classic polymorphic attacks, but a potential weakness is the decision-
making based on the arithmetic mean sequence probability. In a malicious re-
quest, some symbols have a very low probability, and so, the mean sequence
probability is lowered towards zero. But if the attacker is able to extend the
malicious request with additional highly probable symbols, the impact of low-
probable symbols on the mean decreases and the attack might not be recognized.

18 H. Lampesberger et al.

A possible countermeasure is to increase the algorithm’s sensitivity by increasing
order D and TA while reducing Twarn and Talert.

Frog-Boiling Attack This category of poisoning attack [6] affects the presented
detection mechanism. It aims to falsify the statistical detection model by con-
tinuously sending borderline legitimate requests. At some point, the detection
model will be too inaccurate to detect real attacks. A possible countermeasure,
in addition to increasing the algorithm’s sensitivity, is to include the server’s
response into the analysis. For example, tampering with the URI path will likely
produce invalid requests, and accordingly, bad response codes. The downside of
using response codes for decision-making is the limitation of prevention capabil-
ities, because the malicious data has already been sent. This concept has been
implemented in the network prototype, but more testing is still required.

5 Conclusion and Future Work

We propose an on-line learning approach to detect malicious web requests. The
main contribution of this paper is a concept that addresses both concept drift
of web applications and the problem of representative training data. Also by
design, the algorithm copes with URL Rewriting which is popular in realistic
web deployments. In experiments with realistic log data the implemented log
analyzer prototype shows decent detection and throughput performance.

To sum up, our presented method transforms the HTTP request into a se-
quence of symbols, where one symbol is the statistical representation of bytes
between HTTP separator characters. A variable-order Markov model assigns a
probability of occurrence to the sequence. An estimated Beta distribution over
recent sequence probabilities is used to detect deviating sequences. In case of an
detected anomaly, an expert can trace the responsible section in the web request
according to the individual symbol probabilities. Feedback of highly probable
sequences into the model achieves lazy teaching in context of on-line learning,
also, the human expert can intervene in case of erroneous detections.

For future research, testing the network prototype implementation on real-
world network data is necessary. This includes comparison to other existing
methods and long-term testing. Also, binary classification is insufficient for prac-
tical scenarios because the abnormality of an alert does not reflect its potential
impact. For example, scanning attempts are not as harmful as successful code
injections. Clustering of similar alerts is a reasonable approach here. Further-
more, throughput performance can still be optimized if parallelization or GPU-
offloading is considered.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

An On-line Learning Statistical Model to Detect Malicious Web Requests 19

2. Apache 2.0 Documentation: Apache Module mod_rewrite. http://httpd.apache.
org/docs/2.0/mod/mod_rewrite.html (2011), [Online; accessed 28-April-2011]

3. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion
detection. In: CCS ’99: Proceedings of the 6th ACM conference on Computer and
communications security. pp. 1–7. ACM, New York, NY, USA (1999)

4. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order markov
models. J. Artif. Int. Res. 22(1), 385–421 (2004)

5. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (Standard) (January 2005), http://www.ietf.org/
rfc/rfc3986.txt

6. Chan-Tin, E., Feldman, D., Hopper, N., Kim, Y.: The frog-boiling attack: Limi-
tations of anomaly detection for secure network coordinate systems. In: Security
and Privacy in Communication Networks, LNICST, vol. 19, pp. 448–458. Springer
Berlin Heidelberg (2009)

7. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications 32, 396–402 (1984)

8. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the 23rd international conference on Machine learning. pp. 233–
240. ICML ’06, ACM, New York, NY, USA (2006)

9. Duessel, P., Gehl, C., Laskov, P., Rieck, K.: Incorporation of application layer
protocol syntax into anomaly detection. In: ICISS ’08: Proceedings of the 4th
International Conference on Information Systems Security. pp. 188–202. Springer-
Verlag, Berlin, Heidelberg (2008)

10. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd Edition. Wiley-
Interscience (2000)

11. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard)
(June 1999), http://www.ietf.org/rfc/rfc2616.txt, updated by RFCs 2817,
5785

12. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Active learning for network intrusion
detection. In: Proceedings of the 2nd ACM workshop on Security and artificial
intelligence. pp. 47–54. AISec ’09, ACM, New York, NY, USA (2009)

13. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd Edition. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2006)

14. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning dfa representations of
http for protecting web applications. Comput. Netw. 51, 1239–1255 (April 2007)

15. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms, 2nd Edition. Addison-Wesley (1981)

16. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: CCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and communications security.
pp. 251–261. ACM, New York, NY, USA (2003)

17. Krueger, T., Gehl, C., Rieck, K., Laskov, P.: Tokdoc: a self-healing web applica-
tion firewall. In: SAC ’10: Proceedings of the 2010 ACM Symposium on Applied
Computing. pp. 1846–1853. ACM, New York, NY, USA (2010)

18. Ma, J., Liu, X., Wang, Q., Dai, G.: Compression-based web anomaly detection
model. In: Performance Computing and Communications Conference (IPCCC),
2010 IEEE 29th International (December 2010)

19. Maggi, F., Robertson, W., Kruegel, C., Vigna, G.: Protecting a moving target: Ad-
dressing web application concept drift. In: Proceedings of the International Sym-
posium on Recent Advances in Intrusion Detection (RAID). Saint-Malo, France
(September 2009)

20 H. Lampesberger et al.

20. Metasploit: The Metasploit Project. http://www.metasploit.com/ (2011), [On-
line; accessed 30-April-2011]

21. MITRE Corporation: Common Vulnerabilites and Exposures. http://cve.mitre.
org/ (2011), [Online; accessed 12-May-2011]

22. MITRE Corporation: Common Weakness Enumeration. http://cwe.mitre.org/
(2011), [Online; accessed 28-April-2011]

23. Moffat, A.: Implementing the ppm data compression scheme. Communications,
IEEE Transactions on 38(11), 1917 –1921 (November 1990)

24. Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: Mcpad: A multiple classifier
system for accurate payload-based anomaly detection. Computer Networks 53(6),
864 – 881 (2009), traffic Classification and Its Applications to Modern Networks

25. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the first con-
ference on First Workshop on Hot Topics in Understanding Botnets. USENIX
Association, Berkeley, CA, USA (2007)

26. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.: Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS).
San Diego, CA (February 2006)

27. Robertson, W., Maggi, F., Kruegel, C., Vigna, G.: Effective anomaly detection
with scarce training data. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS). San Diego, CA (February 2010)

28. Salomon, D.: Data Compression: The Complete Reference. Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK / etc. (2007)

29. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning
for network intrusion detection. IEEE Symposium on Security and Privacy pp.
305–316 (2010)

30. Song, Y., Keromytis, A.D., Stolfo, S.J.: Spectrogram: A mixture-of-markov-chains
model for anomaly detection in web traffic. In: Proc. of Network and Distributed
System Security Symposium (NDSS) (2009)

31. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)

32. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM conference on Computer and communications
security. pp. 255–264. CCS ’02, ACM, New York, NY, USA (2002)

33. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resistant
to mimicry attack. In: Recent Advances in Intrusion Detection. Lecture Notes in
Computer Science, vol. 4219, pp. 226–248. Springer Berlin / Heidelberg (2006)

34. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In:
Recent Advances in Intrusion Detection. Lecture Notes in Computer Science, vol.
3224, pp. 203–222. Springer Berlin / Heidelberg (2004)

35. Welford, B.P.: Note on a method for calculating corrected sums of squares and
products. Technometrics 4(3), 419–420 (1962)

36. Wojtczuk, R.: Libnids. http://libnids.sourceforge.net/ (2011), [Online; ac-
cessed 9-May-2011]

