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Abstract—Previous attacks that link the sender and receiver of
traffic in the Tor network (“correlation attacks”) have generally
relied on analyzing traffic from TCP connections. The TCP
connections of a typical client application, however, are often
accompanied by DNS requests and responses. This additional
traffic presents more opportunities for correlation attacks. This
paper quantifies how DNS traffic can make Tor users more vul-
nerable to correlation attacks. We investigate how incorporating
DNS traffic can make existing correlation attacks more powerful
and how DNS lookups can leak information to third parties
about anonymous communication. We (i) develop a method to
identify the DNS resolvers of Tor exit relays; (ii) develop a new
set of correlation attacks (DefecTor attacks) that incorporate DNS
traffic to improve precision; (iii) analyze the Internet-scale effects
of these new attacks on Tor users; and (iv) develop improved
methods to evaluate correlation attacks. First, we find that there
exist adversaries that can mount DefecTor attacks: for example,
Google’s DNS resolver observes almost 40% of all DNS requests
exiting the Tor network. We also find that DNS requests often
traverse ASes that the corresponding TCP connections do not
transit, enabling additional ASes to gain information about Tor
users’ traffic. We then show that an adversary that can mount a
DefecTor attack can often determine the website that a Tor user
is visiting with perfect precision, particularly for less popular
websites where the set of DNS names associated with that website
may be unique to the site. We also use the Tor Path Simulator
(TorPS) in combination with traceroute data from vantage points
co-located with Tor exit relays to estimate the power of AS-level
adversaries that might mount DefecTor attacks in practice.

I. INTRODUCTION

We have yet to learn how to build anonymity networks that
resist global adversaries, provide low latency, and scale well.
Remailer systems such as Mixmaster [32] and Mixminion [12]
eschew low latency in favor of strong anonymity. In contrast,
Tor [14] trades off strong anonymity to achieve low latency;
Tor therefore enables latency-sensitive applications such as
web browsing but is vulnerable to adversaries that can observe
traffic both entering and exiting its network, thus enabling
deanonymization. Although Tor does not consider global ad-
versaries in its threat model, adversaries that can observe traffic
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Fig. 1. Past traffic correlation studies have focused on linking the TCP stream
entering the Tor network to the one(s) exiting the network. We show that an
adversary can also link the associated DNS traffic, which can be exposed to
many more ASes than the TCP stream.

for extended periods of time in multiple network locations (i.e.,
“semi-global” adversaries) are a real concern [15, 24]; we need
to better understand the nature to which these adversaries exist
in operational networks and their ability to deanonymize users.

Past work has quantified the extent to which an adversary
that observes TCP flows between clients and servers (e.g.,
HTTP requests, BitTorrent connections, and IRC sessions) can
correlate traffic flows between the client and the entry to the
anonymity network and between the exit of the anonymity
network and its ultimate destination [24, 33]. The ability to
correlate these two flows—a so-called correlation attack—
can link the sender and receiver of a traffic flow, thus com-
promising the anonymity of both endpoints. Although TCP
connections are an important part of communications, the
Domain Name System (DNS) traffic is also quite revealing: for
example, even loading a single webpage can generate hundreds
of DNS requests to many different domains. No previous
analysis of correlation attacks has studied how DNS traffic
can exacerbate these attacks.

DNS traffic is highly relevant for correlation attacks be-
cause it often traverses completely different paths and au-
tonomous systems (ASes) than the subsequent corresponding
TCP connections. An attacker that can observe occasional
DNS requests may still be able to link both ends of the
communication, even if the attacker cannot observe TCP
traffic between the exit of the anonymity network and the
server. Figure 1 illustrates how an adversary may monitor the
connection between a user and the guard relay, and between
the exit relay and its DNS resolvers or servers. This territory—
to-date, completely unexplored—is the focus of this work.

We first explore how Tor exit relays resolve DNS names.
By developing a new method to identify all exit relays’ DNS
resolvers, we learn that Google currently sees almost 40%
of all DNS requests exiting the Tor network. Second, we
investigate which organizations can observe DNS requests that
originate from Tor exit relays. To answer this question, we
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emulate DNS resolution for the Alexa top 1,000 domains from
several ASes. We find that DNS resolution for half of these
domains traverses numerous ASes that are not traversed for the
subsequent HTTP connection to the web site. Next, we show
how the ability to observe DNS traffic from Tor exit relays
can augment existing website fingerprinting attacks, yielding
perfectly precise DefecTor1 attacks for unpopular websites. We
further introduce a new method to perform traceroutes from
the networks where exit relays are located, making our results
significantly more accurate and comprehensive than previous
work. Finally, we use the Tor Path Simulator (TorPS) [23] to
investigate the effects of Internet-scale DefecTor attacks.

We demonstrate that DNS requests significantly increase
the opportunity for adversaries to perform correlation attacks.
This finding should encourage future work on correlation
attacks to consider both TCP traffic and the corresponding
DNS traffic; future design decisions should also be cognizant
of this threat. Our work (i) serves as guidance to Tor exit
relay operators and Tor network developers, (ii) improves state-
of-the-art measurement techniques for analysis of correlation
attacks, and (iii) provides even stronger justification for in-
troducing website fingerprinting defenses in Tor. To foster
future work and facilitate the replication of our results, we
publish both our code and datasets.2 In summary, we make
the following contributions:

• We show how existing website fingerprinting attacks
can be augmented with observed DNS requests by an
AS-level adversary to yield perfectly precise DefecTor
attacks for unpopular websites.

• We develop a method to identify the DNS resolver of
exit relays. We find that Tor exit relays comprising
40% of Tor’s exit bandwidth rely on Google’s public
DNS servers to resolve DNS queries.

• We quantify the extent to which DNS resolution
exposes Tor users to additional AS-level adversaries
who are not on the path between the sender and
receiver. We find that for the Alexa top 1,000 most
popular websites, many ASes that are on the paths
between the exit relay and the DNS servers required
to resolve the sites’ domain names are not on the path
between the exit relay and the website.

• We develop a new measurement method to evaluate
the extent to which ASes are on-path between exit
relays and DNS resolvers. We use the RIPE Atlas [39]
platform to achieve previously unprecedented path
coverage and accuracy for evaluating the capabilities
of AS-level adversaries.

The rest of this paper is organized as follows. Section II
presents background, and Section III relates our study to
previous work. In Section IV, we shed light on the landscape of
DNS in Tor. Section V discusses our DefecTor attacks, which
we evaluate in Section VI. We then model the Internet-scale
effect of our attacks in Section VII. Finally, we discuss our
work in Section VIII and conclude the paper in Section IX.

1The acronym is short for DNS-enhanced fingerprinting and egress
correlation on Tor.

2Our project page is available at https://nymity.ch/tor-dns/.

II. BACKGROUND

We now provide an introduction to the Tor network,
website fingerprinting attacks, as well as how the Tor network
implements DNS resolution.

a) The Tor network: The Tor network is an overlay
network that anonymizes TCP streams such as web traffic.
As of August 2016, it comprises approximately 7,000 relays
and about two million users. The hourly published network
consensus summarizes all relays that are currently online.
Clients send data over the Tor network by randomly selecting
three relays—typically called the guard, middle, and exit
relay—that then form a virtual tunnel called a circuit. The
guard relay learns the client’s IP address, but not its web
activity, while the exit relay gets to learn the client’s web
activity, but not its IP address. Relays and clients talk to each
other using the Tor protocol, which uses 512-byte cells. Finally,
each relay is uniquely identified by its fingerprint—a hash over
its public key.

b) Website fingerprinting attacks: The Tor network
encrypts relayed traffic as it travels from the client to the
exit relay. Therefore, intermediate parties such as the user’s
Internet service provider (ISP) cannot read the contents of any
packet. Tor does not, however, protect other statistics about the
network traffic, such as packet inter-arrival timing, directions,
and frequency. The ISP can analyze these properties to infer
the destinations that a user is visiting. The literature calls this
attack website fingerprinting.

Past work evaluated website fingerprinting attacks in two
settings: a closed-world setting consists of a set of n monitored
websites, and the attacker tries to learn which among all n sites
the user is visiting with the notable restriction that the user can
only browse to one of the n websites. The open-world setting
is more realistic: the user can browse to unmonitored sites
in addition to the monitored sites. Unmonitored sites are, per
definition, not known to the attacker; thus, the attacker’s traffic
classifier cannot train on unmonitored sites the user visits.
The attacker’s classifier can train on whatever unmonitored
sites it chooses, as long as the classifier has not trained on an
unmonitored site used for testing. Two relevant metrics in the
open-world setting are recall and precision. Recall measures
the probability that a visit to a monitored site will be detected,
while precision measures the probability that a classification
by the classifier of a visit to a monitored site (positive test
outcome) is the correct one. Consider a classifier with 0.25
recall and 0.5 precision: on average, every fourth visit by
the user to a monitored site will be detected, and half of the
classifications by the classifier will be wrong. Errors can either
classify a monitored site as unmonitored (lowering recall)
or vice versa (lowering precision). Mistaking one monitored
website for another is less likely [44].

Wa-kNN is a website fingerprinting attack by Wang et
al. [45] that uses a k-nearest neighbor classifier with a custom
weight-learning algorithm, WLLCC [44, § 3.2.5]. From packet
traces between a Tor client and its guard, Wa-kNN extracts a
number of features to classify each website. Useful features
include the number of outgoing packets and bursts of packets
in the same direction. In the training phase, WLLCC adjusts
weights of features extracted from sites of known classes
such that the distance between instances of the same site
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(class) are minimized (collapsed). In the testing phase, Wa-
kNN determines the distance of a testing traffic trace to all
known training traces. The distance calculation results in the
k nearest classes: if all classes are the same, then the testing
trace is classified as that class, otherwise it is classified as
unmonitored. In the open-world setting, one class represents
all unmonitored sites both during training and testing. By
increasing k, Wa-kNN can trade decreased recall for increased
precision. We set k = 2 when using Wa-kNN for higher recall
since DefecTor is a highly precise attack.

Tor could eliminate website fingerprinting attacks with en-
crypted, constant-bitrate channels between a Tor client and its
guard; other anonymity networks could use a similar technique.
Unfortunately, the Tor network’s limited spare capacity does
not allow for such a throughput-intensive defense, but some
research has worked on making this type of defense more
efficient [8, 26, 38, 44].

c) How Tor resolves DNS requests: Tor clients must
send DNS requests over Tor to prevent DNS leakage (e.g.,
having a DNS request travel over an unencrypted channel as
opposed to over Tor itself). Tor does not transport UDP traffic,
but it implements a workaround to wrap DNS requests into Tor
cells. Using the SOCKS protocol, applications can instruct the
Tor client to establish a circuit to a given domain and port.3
After the user types in a domain, say example.com, the Tor
browser establishes a connection to the SOCKS proxy exposed
by the local Tor client. The Tor client then selects an exit
relay whose exit policy supports example.com and port 443.
Next, the client sends a RELAY_BEGIN Tor cell to the exit relay,
instructing it to first resolve example.com, and then establish
a TCP connection to the resolved address at port 443 [13,
§ 6.2]. After successfully establishing a connection, the exit
relay responds with a RELAY_CONNECTED cell. The client can
then exchange data with its intended destination. Another type
of cell, RELAY_RESOLVE, supports pure name resolution, without
establishing a subsequent TCP connection [13, § 6.4]. The exit
relay responds with a RELAY_RESOLVED cell.

Exit relays send their DNS requests to the system resolver,
which Linux systems read from /etc/resolv.conf. Tor does
not modify the system resolver and uses whatever the exit
relay operator configured, such as the ISP’s resolver, or public
resolvers such as Google’s public DNS resolver 8.8.8.8. As
of August 2016, exit relays cache DNS responses to speed up
repeated lookups. The caching layer for Tor clients, however,
is off by default to prevent tracking attacks due to modified
DNS responses [31].

III. RELATED WORK

This paper combines traffic analysis methods for corre-
lation attacks with website fingerprinting attacks; we discuss
related work in each of these two areas.

A. Traffic analysis and correlation attacks

Tor’s threat model excludes global adversaries [14], but the
practical threat of such adversaries is an important question
that the research community has spent considerable effort

3The SOCKS versions 4a and 5 support connection initiation using domain
names in addition to IP addresses.

on answering. In 2004, when the Tor network comprised
only 33 relays, Feamster and Dingledine investigated the
practical threat that AS-level adversaries pose to anonymity
networks [16]. The authors considered an attacker that controls
an AS that is traversed both for ingress and egress traffic,
allowing the attacker to correlate both streams. Using AS path
prediction [19], Feamster and Dingledine found that powerful
tier-1 ISPs reduce location diversity of anonymity networks.
In 2007, Murdoch and Zieliński drew attention to IXP-level
adversaries, a class of adversaries that was missing in Feamster
and Dingledine’s work [33]. Murdoch and Zieliński showed
that IXP adversaries are able to correlate traffic streams, even
in the presence of packet sampling rates as low as one in 2,000.

In 2013, Johnson et al. [24] presented the first large-scale
study on the risk of Tor users facing relay-level and AS-level
adversaries. The authors developed TorPS [23] that simulates
Tor circuits for a number of user models. By combining
TorPS with AS path prediction, Johnson et al. could answer
questions such as the average time until a Tor user’s circuit
is deanonymized by an AS or IXP. Most recently in 2016,
Nithyanand et al. [35] used AS path prediction to evaluate the
practical threat faced by users in the top ten countries using
Tor. In 2015, Juen et al. [27] examined the accuracy of path
prediction algorithms that prior work [16, 24] used to estimate
the threat of correlation attacks. The authors compared AS path
predictions to millions of traceroutes, initiated from 25% of Tor
relays by bandwidth at the AS level, and found that only 20%
of predicted paths matched the paths observed in traceroutes.
Juen et al. could not consider the reverse path in traceroutes.
In 2015, Sun et al. [40] addressed this shortcoming; although
past work treated routing as static, Sun et al. showed that the
dynamic nature of Internet routing makes AS-level adversaries
stronger than previous work had considered.

We improve on previous work in two significant ways: (i)
we are the first to evaluate how DNS traffic exacerbates traffic
correlation attacks, both in concept and in practice; and (ii)
we develop and deploy a scalable, sustainable version of the
measurement method proposed by Juen et al. [27]. Our method
uses the volunteer-run RIPE Atlas measurement platform [39],
as opposed to relying on relay operators to run third-party
scripts. This approach allows us to fully automate our method
and achieve previously unprecedented scale.

B. Website fingerprinting

In 2009, Herrmann et al. [21] demonstrated the first website
fingerprinting attack against anonymity systems—including
Tor—in a closed-world setting. In 2011, Panchenko et al. [37]
greatly improved on Herrmann et al.’s detection rate and
provided insight into an open-world setting. In 2012, Cai et
al. [10] improved on previous work by proposing an attack
that used Hidden Markov Models to determine whether a
sequence of page requests all come from the same site. The
authors used an open-world setting for their evaluation. Wang
and Goldberg [46] proposed an improved attack that employed
a new method for data gathering. In 2014, Wang et al. [45]
further improved on their results with a k-nearest neighbor
classifier Wa-kNN and a custom weight-learning algorithm
(WLLCC [44, § 3.2.5]) that in several rounds determine the
optimal weights for features extracted from traffic traces.
Cai et al. [9] determined which traffic features provide the
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most predictive power to detect websites, proved a lower
bound of any defense that achieves a certain level of security,
and provided a framework to investigate the performance of
website fingerprinting attacks. Juarez et al. [25] showed that
all previous attacks made several simplifying assumptions; the
work suggested that attacks are still difficult to run outside
a lab setting as an attacker will have to consider operating
system differences, page changes, and background traffic. Re-
cently, in 2016, Wang and Goldberg addressed many practical
roadblocks to website fingerprinting, such as noisy data and
maintaining a training set, further highlighting the need for
website fingerprinting defenses in Tor [47].

Panchenko et al. [36] showed that webpage fingerprinting
(i.e., fingerprinting of any page on a site) is significantly harder
than website fingerprinting (i.e., fingerprinting of only the start
page of a site). Hayes and Danezis proposed k-fingerprinting,
an attack with notably better performance than Wa-kNN even
in the face of defenses [20]. Their attack retains 30% accuracy
in a closed-world setting against the WTF-PAD defense by
Juarez et al. [26]—a prime candidate for deployment in
Tor [38]—at the cost of 50% bandwidth overhead. Juarez et
al. used Wa-kNN to evaluate WTF-PAD and set k = 5, as
recommended by Wang et al. for an optimal trade-off between
recall and the false positive rate.

In our work, we show how to correlate and use observed
DNS requests in concert with website fingerprinting attacks,
which significantly improves precision for website fingerprint-
ing. In scenarios where precision is paramount, DefecTor
attacks pose an even bigger threat than website fingerprinting
attacks from attackers that can observe even a modest fraction
of DNS traffic from the Tor network. Mitigating the two De-
fecTor attacks that we present has implications for the design
of website fingerprinting defenses: open-world evaluations of
the website fingerprinting defense should minimize recall even
when the website fingerprinting attack is tuned to sacrifice
precision for recall. In the case of Wa-kNN, this means a low
k: our results are based on k = 2.

IV. UNDERSTANDING THE LANDSCAPE

Before explaining our attack, we need to better understand
how Tor performs DNS resolution. We begin by investigating
how common it is for adversaries to be able to observe DNS
requests but not subsequent TCP connections of Tor users
(Section IV-A). We then seek to understand how these results
connect to the Tor network by determining the DNS resolvers
used by exit relays (Section IV-B).

A. Quantifying the additional AS exposure of DNS queries

Adversaries that can observe both DNS and subsequent
TCP traffic (e.g., the ISP of an exit relay) gain no benefit
from seeing the client’s DNS traffic, since TCP traffic is
sufficient to mount correlation attacks [33]. In this work, we
consider adversaries that can observe traffic entering the Tor
network and some DNS requests exiting the network—such as
requests addressed to DNS root servers—but not subsequent
TCP traffic from exit relays. We first determine the prevalence
of these adversaries by measuring the number of ASes that
DNS queries traverse versus the number of ASes subsequent
web traffic traverses.
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AS 7922 (US)
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Fig. 2. Five box plots capturing the AS exposure metric λ for Alexa’s top
1,000 web sites. The box plots represent five autonomous systems in three
countries.

We quantify the exposure of DNS traffic versus TCP traffic
as follows. We begin with Alexa’s top 1,000 [4], a list of
the 1,000 most popular web sites as estimated by Alexa. For
each site, we conducted two experiments. First, we ran a
TCP traceroute to the site, targeting port 80 to mimic web
traffic. Second, we determined the DNS delegation path for the
website’s DNS name using the dig command’s +trace feature.
The delegation path of a domain name, say www.example.com,
is a hierarchy of authoritative DNS servers, such as the
authoritative server for .com pointing to the authoritative server
for example.com, which in turn points to the authoritative
server responsible for www.example.com. We also ran UDP
traceroutes to each server in the delegation path, targeting port
53 to mimic DNS resolution.4 For both experiments, we then
mapped all IP addresses in the traceroutes to AS numbers [41],
generating both a set of traversed ASes for DNS traceroutes
(D) and a set of traversed ASes for web traceroutes (W ). Given
these two sets for each of Alexa’s top 1,000, we compute the
fraction of ASes that are only traversed for DNS traffic, but
not for web traffic (λ ):

λ ∈ [0,1] =
|D \W |
|D ∪W |

. (1)

The metric approaches 1 as the number of ASes that are only
traversed for DNS increases. For example, if D = {1,2,3} and
W = {2,3,4}, then λ = |{1,2,3}\{2,3,4}|

|{1,2,3}∪{2,3,4}| =
|{1}|

|{1,2,3,4}| =
1
4 = 0.25.

We determined λ for each site in the Alexa top 1,000 from five
autonomous systems in three countries.5 One of our vantage
points, the French OVH, is the most popular AS by exit
bandwidth as of August 2016. It sees 10.98% of exit traffic,
closely followed by AS 12876 (owned by the French Online)
that sees 9.33% of exit traffic. Our experiment consisted of
5,000 traceroute runs, 4,773 (95.5%) of which succeeded, and
227 (4.5%) failed.

The result is illustrated in Figure 2, which shows five
box plots capturing λ values for Alexa’s top 1,000 sites. The
median of all 4,773 λ values is 0.571, so for half of all runs,
DNS-only ASes account for 57% or more of all traversed
ASes. This result only applies to exit relays that do their
own DNS resolution; for relays that use a third-party resolver,
the ASes that are traversed between the exit relay and its

4The tool we developed for this purpose is available online at https://github.
com/NullHypothesis/ddptr.

5The ASes are: OVH (France), Gandi (France), Karlstad University (Swe-
den), Princeton University (U.S.), and Comcast (U.S.).
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Fig. 3. Our method to identify the DNS resolvers of exit relays. Over each
exit relay, we resolve relay-specific domain names that are under our control.
By inspecting our DNS server logs, we can then identify the IP address of all
exit relay resolvers.

DNS resolver is the metric of interest. We further believe
that relays in regions other than Western Europe or North
America are likely to witness significantly different exposure
of DNS queries because many websites outsource their DNS
setup to providers such as Cloudflare whose points of presence
are centered around Western Europe and North America. We
conclude that adversaries that are unable to observe a Tor user’s
TCP connection still have many opportunities to see a TCP
connection’s corresponding DNS request. Such adversaries
include (i) popular open DNS resolvers such as Google and
OpenDNS, (ii) DNS root servers, and (iii) network adversaries
located on the path to the previous two entities.

B. Determining how Tor exit relays resolve DNS queries

Having shown that the Internet provides ample opportunity
for AS-level adversaries to snoop on DNS traffic from exit
relays, we now investigate how the exit relays in the Tor
network resolve DNS queries in practice. Before this study, we
only had anecdotal evidence (e.g., from OpenDNS-powered
error messages [49, § 4.1]) that some exit relays would
occasionally show.

We identify the DNS resolver of all exit relays by using
exitmap [48], a scanner for Tor exit relays. The tool automates
running a task such as fetching a webpage over all one
thousand exit relays, making it possible to see the Internet
through the “eyes” of every single exit relay. Using exitmap,
we resolve unique, relay-specific domains over each exit relay,
to a DNS server under our control. Figure 3 illustrates this
experiment. To improve reliability, we configured exitmap to
use two-hop circuits instead of the standard three-hop circuits.
The first hop was a guard relay under our control. Over each
exit relay, we resolved a unique domain PREFIX.tor.nymity.ch.
The prefix consisted of the relay’s unique 160-bit fingerprint,
concatenated to a random 40-bit string whose purpose is to
prevent caching, so exit relays indeed resolve each query
instead of responding with a cached element. We controlled the
authoritative DNS server of tor.nymity.ch, so we could capture
both the IP address and packet content of every single query
for tor.nymity.ch.

An exit relay can either run its own resolver, as shown in
the left exit relay in Figure 3; or rely on a third-party resolver,
such as the one provided by its ISP, as shown in the right
exit relay in Figure 3. If an exit relay runs its own resolver,
we expect to receive a DNS request from the exit relay’s
IP address, but if an exit relay uses a third-party resolver,

User The Tor network

Exit

Web server

DNS server
WF attack

DNSGuard

HTTP

DNS requests

Tor
 tr

affi
c

Fig. 5. An overview of the DefecTor attack. An adversary must monitor both
ingress (encrypted Tor traffic) and egress (DNS request) traffic. A AS-level
adversary between the client and its guard monitors ingress traffic. The same
adversary monitors egress traffic between the exit and a DNS server, or the
DNS server itself. Both ingress and egress traffic then serve as input to the
DefecTor attack.

we expect to receive a request from an unrelated IP address.
Having encoded relay-specific fingerprints in the query names,
we are able to map queries to exit relays in such cases. We ran
this experiment from September 2015 to May 2016, at least
once a day.

On Linux relays, DNS resolution is controlled by the file
/etc/resolv.conf, which contains up to three DNS resolvers
that are queried in order. If the primary resolver does not
respond in time, the system falls back to the second, and
finally the third resolver. Our data suggests that several exit
relays used different resolvers in subsequent exitmap scans—
one relay, for example, used both Google’s DNS resolver and
one provided by its ISP. For our visualization, we only consider
the first resolver we observed for an exit relay, which is likely
but not guaranteed to be the primary resolver.

Figure 4 illustrates the fraction of DNS requests that four of
the most popular organizations could observe. Google averages
at 33%, but at times saw more than 40% of all DNS requests
exiting the Tor network—an alarming number for a single
organization. Second to Google is “Local”—exit relays that
run their own resolver, averaging at 12%. Next is OVH, which
used to be as popular as local resolvers, but slowly lost its
share over time. Note that in contrast to Google, OVH does
not run a public DNS server; the company’s resolvers are only
accessible to its customers. Finally, there is OpenDNS, which
also runs public DNS resolvers. OpenDNS saw occasional
spikes in popularity but always remained in the single digits.
Apart from the illustrated top resolver setups, the distribution
has a long tail, presumably consisting of many ISP resolvers.

V. DEFECTOR ATTACKS

As with conventional correlation attacks, an attacker must
observe traffic that is both entering and exiting the Tor
network; in contrast to threat models from previous work,
we incorporate DNS instead of only TCP traffic. Figure 5
illustrates our correlation attack; it requires the following
building blocks:

• Ingress sniffing: An attacker must observe traffic that
is entering the Tor network. The attacker can operate
on the network level, as a malicious ISP or an intelli-
gence agency. In addition, the attacker can operate on
the relay level by running a malicious Tor guard relay.
In both cases, the attacker can only observe encrypted
data, so packet lengths and directions are the main
inputs for website fingerprinting [36].
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resolver is responsible for. Google’s DNS resolver is by far the most popular, at times serving more than 40% of all DNS requests coming out of the Tor
network. Google is followed by local resolvers, which average at around 12%. Once serving a fair amount of traffic, OVH dropped in popularity, and is now
close to OpenDNS, an organization that runs an open resolver.

• Egress sniffing: To observe both ends of the commu-
nication, an attacker must also observe egress DNS
traffic. We expect the adversary either to be on the
path between exit relay and a DNS server or to run a
malicious DNS resolver or server. We do not expect
an attacker to run an exit relay because in this case
conventional end-to-end correlation attacks are at least
as effective as those we describe here [33].

We combine a conventional website fingerprinting attack
operating on traffic from ingress sniffing with DNS traffic
observed by egress sniffing, creating DefecTor attacks. Our
attacks correlate the websites observed by the website finger-
printing attack in ingress traffic with the websites identified
from DNS traffic.6 Next, we describe how we simulate the
DNS traffic from Tor exits, how we map DNS requests to
websites, and finally present our two DefecTor attacks.

A. Approximating DNS traffic from Tor exits

We first investigate the type and volume of DNS traffic that
Tor’s exit relays send. There are no logs of outgoing traffic
from Tor exit relays available to us, and ethical considerations
kept us from trying to collect them (e.g., by operating exit
relays and recording all the outgoing traffic). We therefore opt
to approximate the DNS traffic emerging from Tor exit relays
by (i) building a model of typical Tor users’ website browsing
patterns, (ii) collecting a minimally invasive dataset of DNS
traffic, and (iii) accounting for the effects of DNS caching.

1) Modeling which sites Tor users visit: We first build a
model to approximate which websites Tor users visit. As of
July 2016, there are about 173 million active websites [34];
the Alexa ranking [4] gives insights into their popularity based
on the browsing behavior of a sample of all Internet users. The
distribution of the popularity of these websites has previously
been fit to a power-law distribution based on the rank of
the website [2, 11, 30]. For the pageview numbers of the
Alexa top 10,000 websites, we found a power-law distribution
to be a good fit as neither a log-normal nor a power-law
distribution with exponential cutoff (i.e., a truncated power-
law distribution) offered significantly better fits. We used the
Python powerlaw package [3] for fitting and picked a power-
law distribution with an α parameter of 1.13. When varying the
fitting parameter xmin that determines beyond which minimum

6Our work can be understood as DNS-enhanced traffic correlation attack,
or as DNS-enhanced website fingerprinting attack.

value the power-law behavior should hold in the provided
data, we can get different α values. We made a conservative
choice of picking this smaller α value as it underestimates the
popularity of popular websites and therefore performs worse
for the attacker.7 Thus, we use a power-law distribution to
model what websites Tor users visit. On the one hand, this
might overestimate the popularity of higher-ranked websites
such as Facebook and YouTube because we believe that Tor
users—who tend to be privacy-conscious—are more likely to
seek out alternatives than the typical Internet user. On the other
hand, highly sensitive sites tend to be offered as onion services.
We will discuss the implications of our model for browsing
behavior later.

2) Modeling how often Tor users visit each site: Next, we
determine how many websites Tor users visit in a certain time
span. We approximated this number by setting up an exit relay
whose exit policy included only the ports 80 and 443, so our
relay would only forward web traffic. We then used the tool
tshark to capture the timestamps of DNS requests—but no
DNS responses. We made sure that our tshark filter did not
capture packet payloads or headers, so we were unable to
learn what websites Tor users were visiting. In addition, we
patched tshark to log timestamps at a five-minute granularity.
The coarse timing granularity allows us to publish this dataset
with minimal privacy implications; Section VIII-A discusses
the ethical implications of this experiment in more detail. We
ran the experiment for two weeks, from May 15, 2016 to May
31, 2016, which allowed us to determine the number of DNS
requests for 4,832 five-minute intervals. Figure 6 shows this
time series, but for clarity we only plot May 25, 2016. The
distribution’s median is 105. The time series features several
spikes; the most significant one counts 1,410 DNS requests.
We repeated the same experiment with the so-called reduced
exit policy8 because it contains several dozen more ports and it
is more popular among Tor relay operators; as of August 2016,
it is used by 7.8% of exit relays by capacity. In comparison,
the exit policy containing only port 80 and 443 only accounts
for 1.5%. The reduced exit policy resulted in a median of 102
DNS requests per five minutes, so the difference between both
policies is only three DNS requests.

We then interpolate these numbers to all Tor exit relays

7Alexa’s page-view numbers ignore multiple visits by the same user on the
same day (see https://support.alexa.com/hc/en-us/articles/200449744), so the
ranking might be slightly off when modeling website visit patterns.

8The reduced exit policy is available online at https://trac.torproject.org/
projects/tor/wiki/doc/ReducedExitPolicy.
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Fig. 6. The number of DNS requests per five-minute interval on our exit
relay for May 25, 2016. Using a privacy-preserving measurement method, we
only determined approximate timestamps and no content.

based on their published bandwidth statistics. While we mea-
sured a median of 105, the mean of the distribution was 119.3
per five minutes during a two-week period. From DNS statis-
tics of the Alexa top one million websites (see Section V-B) we
know that one website visit causes outgoing DNS requests for
10.3 domains on average (assuming a power-law distribution
of site popularity as described above, and taking into account
Tor’s caching of pending DNS requests, ensuring that multiple
requests sent by clients for the same domain name only result
in one outgoing request by the exit). This means that our exit
relay saw an average of 23.2 website visits per ten minutes.
Assuming that the two main factors influencing the volume
of DNS requests are a relay’s bandwidth and its exit policy,
and having shown that the exit policy does not significantly
impact the number of DNS requests, we can scale this number
up to the whole Tor network using the self-reported bandwidth
statistics of exit relays. In particular, we use the bandwidth
information reported in the extra-info descriptors that are
available on CollecTor [42] and estimate the number of website
visits on each of the about 1,200 exit relays active at that time.
The resulting average number of websites visited through the
Tor network is 288,000 per ten minutes. However, this number
is merely an estimate because the interpolation is based on a
single exit relay, and the bandwidth data of exit relays is self-
reported and might therefore be incorrect.

Recently, Jansen and Johnson measured that the average
number of active web (port 80 and 443) circuits in Tor
amounts to about 700,000 per ten minutes [22, § 5.3]. Tor
Browser, The Tor Project’s fork of Firefox, builds one circuit
per website entered in the URL bar. How long the circuit
remains active depends on Tor Browser settings (primarily
MaxCircuitDirtiness currently set to ten minutes) and how
long TCP streams in the circuit are active: as long as at least
one stream is active, the circuit remains active. Each time
a new stream is attached to a circuit, the circuit’s dirtiness
timeout is reset. The number of active circuits serves as an
upper bound for the number of websites visited over Tor:
visiting different pages of a website will use the same circuit,
and visiting a new website will construct a new circuit. Users
visiting several pages of a website and websites with long-
lived reoccuring connections, like Twitter and Facebook with
continuously updating feeds, all lower the number of websites
visited in Tor relative to the number of active circuits. For
our model we consider the upper bound of 700,000 to be the
number of websites visited through the Tor network per ten
minutes. This is a conservative choice as more website visits
increase the anonymity set of websites possibly visited by a

Tor user—and therefore reduces the information an attacker
can gain from observed DNS traffic. Later, we revisit the
implications of our choice by both scaling the Tor network
up to ten times its estimated size, and scaling it down to the
size of 288,000 website visits per ten minutes that we got from
our own interpolation described above.

3) Modeling the effects of DNS caching at Tor exits: To
learn what DNS requests the adversary can see, we need to
take into account caching of DNS responses. We ignore client-
side DNS caching since it is disabled by default, as described
in Section II. Exit relays, however, do cache DNS requests
and we take it into account because all Tor clients using the
same exit relay share its cache. In addition to their resolver’s
cache, exit relays maintain their own DNS cache9 and enforce
a minimum TTL of 60 seconds and a maximum TTL of 30
minutes.10 We refer to this as Tor’s TTL clipping. However,
due to a bug that we identified,11 the TTL of all DNS responses
is set to 60 seconds.

If a Tor client attempts to resolve a domain that an exit
relay has cached, the adversary will be unable to observe this
request. However, the adversary can record all observed DNS
requests over the past x seconds, where x is the maximum TTL
value (i.e., maintain a sliding window of length x). If a Tor
client is attempting to resolve a domain name, the request is
either cached or not. If it is not cached, the adversary will see
it as a new, outgoing DNS request from the exit relay. If it
is cached, it must have been resolved by the exit relay in the
last x seconds, and will therefore be in the sliding window.
The sliding window technique allows the attacker to capture
all relevant DNS requests, regardless of if they are cached or
not. We assume that an adversary applies this sliding window
technique and models the observable DNS traffic accordingly.
The attacker observes a fraction of Tor’s exit bandwidth for
a specific window length, and together with our website visit
frequency estimation, this triggers a number of website visits
in our simulation. For each visit event, we randomly draw a
website using the power-law website popularity distribution
described above and put its DNS requests into the window.
As we will see next, we do not need to simulate or consider
the fact that the observed fraction of Tor exit bandwidth
corresponds to many different exits with individual caches.

B. Inferring website visits from DNS requests

Given a sliding window full of DNS requests, we in-
vestigate how this information can help determine whether
a user has visited a website of interest. In April 2016, we
visited the Alexa top one million websites five times, and
collected all DNS requests that each visit of a website’s
frontpage generated. We refer to the data collected for one
visit as a sample. We performed these measurements in five
rounds from Karlstad University. Each round browsed all one
million websites in random order before visiting the same
website again. We used Tor Browser 5.5.4 and configured it
not to browse over Tor: Tor Browser ensures that the browser
behavior is identical to a Tor Browser user over Tor. By

9The code is available online at https://gitweb.torproject.org/tor.git/tree/src/
or/dns.c?id=tor-0.2.9.1-alpha.

10The code is available online at https://gitweb.torproject.org/tor.git/tree/src/
or/dns.c?id=tor-0.2.9.1-alpha#n209.

11The bug report is available online at https://bugs.torproject.org/19025.
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Tab. 1. The percentage of websites in Alexa’s top 1 million that use
providers that restrict access from Tor [28].

Description Percentage

Website behind Cloudflare IP address 6.44
Domain on website uses Cloudflare 25.81
Domain on website uses Akamai 33.86
Domain on website uses Google 77.43
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Fig. 7. The fraction of websites in Alexa’s top one million that have at
least one unique domain. We grouped all domains into 1,000 consecutive,
non-overlapping bins of size 1,000. The vast majority of sites (96.8%) have
unique domains.

not using Tor, we can bypass IP blacklists and CAPTCHAs
that Tor users are frequently struggling with. Table 1 shows
the percentage of websites in our dataset that are hosted by
Cloudflare or Akamai. We might not be able to access these
websites programatically over Tor because they block or filter
exit relays, as identified by Khattak et al. [28]. We also include
Google, which is prevalent in our dataset and restricts access
to Tor users for Google’s search.

We collected 2,540,941 unique domain names from a total
of 60,828,453 DNS requests. The dataset contains 2,260,534
domains that are unique to a particular website, i.e., are not
embedded on any other top million site; we call these domains
unique domains. Unique domains are particularly interesting
because they reveal to the adversary what sites among the top
million the user has visited. This is not possible for domains
such as youtube.com, simply because many websites embed
YouTube videos. Figure 7 shows the fraction of sites with
unique domains for websites up to Alexa’s top one million. We
grouped all domains into 1,000 consecutive, non-overlapping
bins of size 1,000. For 96.8% of all sites on the Alexa top one
million there exists at least one unique domain. Interestingly,
more popular websites are less likely to have a unique domain
associated with them: only 77% of the first bin—the most
popular 1,000 domains—contain at least one unique domain.

Table 2 shows summary statistics for the number of do-
mains per website. At least half of the sites have ten domains
per website, two of them are unique, suggesting that an
adversary can identify many website visits by observing a
single unique DNS request.

To evaluate the feasibility of mapping DNS requests to
websites, we construct a naïve website classifier that maps the
unique domains in a set of DNS requests to the corresponding
website that contains a matching set of domains. With five-
fold cross-validation on our Alexa top one million dataset
(with five samples per site), we consider a closed world and
an open world. In the closed world, the attacker can use
samples from all sites in training; in the open world, some

Tab. 2. Summary statistics for the number of domains per website in the
Alexa top 1 million. More than half of the sites embed two domains that are
unique to that site.

Domains Median Mean ± Stddev Min. Max.

Per site 10 12.2±11.2 1 397
Unique per site 2 2.3± 1.8 0 363

sites are unmonitored and therefore unknown (as per the fold).
The closed-world evaluation yields 0.955 recall. In the open-
world evaluation, we monitor the Alexa top 500,000 with five
samples each and consider 433,000 unmonitored sites. The
number of unmonitored sites is determined by our power-law
distribution to represent a realistic base rate (for the entire Tor
network) for evaluating our classifier: on average, for sites
in the Alexa top 500,000 to be visited 2.5 million times,
there will be about 433,000 visits to sites outside of Alexa’s
top 500,000. Our classifier does not take into account the
popularity of websites. The open-world evaluation yields a
recall of 0.947 for a precision of 0.984. By accounting for
request order, per-exit partitioning of DNS requests, TTLs,
and website popularity, we expect that classifying website
visits from DNS requests can be made even more accurate.
Further, a closed world is realistic in our setting: determining
the DNS requests made by all 173 million active websites on
the Internet is practical, even with modest resources. We use
the conservative open world results when simulating the Tor
network and the attacker’s success in mapping DNS requests
to websites. We conclude that for the purpose of identifying
websites, observing DNS requests coming out of Tor is almost
as effective as observing the web traffic itself.

C. Classifiers for DefecTor attacks

We extend Wa-kNN from Wang et al. [45] (described in
Section II) by having it take as input a list of sites derived
from observing DNS requests. In particular, we implement two
DefecTor attacks:

ctw We “close the world” on a Wa-kNN classifier
that we modified to consider only the distance
to observed sites when calculating the k-nearest
neighbors. The classifier still considers the dis-
tance to all unmonitored sites.

hp When Wa-kNN classifies a trace as a monitored
site, confirm that we observed the same site in
the DNS traffic (ensuring high precision). If not,
make the final classification unmonitored.

These approaches apply to any website fingerprinting attack.
The ctw attack increases the effectiveness of conventional
website fingerprinting attacks by making them more akin to a
closed-world setting, where websites have known fingerprints
and the world is often of limited size. Conceptually, the attack
could also include a custom weight-learning run—training only
on observed sites—but our initial results showed little to no
gain, despite significant increases in testing time. We assume
that this is due to the fact that some features of traffic traces are
more useful than others, regardless of the training data [20].
The hp attack only produces a positive classification if both
ingress and egress traffic are consistent, resulting in a simple
but effective classifier.
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VI. EVALUATING DEFECTOR ATTACKS

A. Attack precision and recall

To evaluate our DefecTor attacks, we collected traffic traces
in May 2016 using Tor Browser 5.5.4. We modified Tor
Browser to not generate network traffic on launch (i.e., check
for updates, extensions, etc.), and we modified Tor (bundled
with Tor Browser) to log incoming and outgoing cells. We then
performed 100 downloads for each site in the Alexa top 1,000
and one download for each site in the Alexa top (1k,101k].
We randomly distributed these measurement tasks to a Docker
fleet; each download used a fresh circuit without guard relay,
and a fresh copy of Tor Browser for up to 60 seconds, in
line with the recommendations by Wang and Goldberg [46,
§ 4]. We cached Tor’s network consensus to minimize load on
the network. We labeled a measurement as successful if we
managed to resolve the domain of the site; we did not prune our
dataset further, neglecting issues like Cloudflare CAPTCHAs,
outliers, control cells, and localized domains [25]. Presumably,
this means that we will underestimate the effectiveness of our
attack, but we are primarily interested in the difference be-
tween website fingerprinting attacks and DefecTor attacks [46].

We perform ten-fold cross-validation for all of our ex-
periments in the open world setting, monitoring 1,000 sites
with 100 instances each, and 100,000 unmonitored sites. The
1:1 ratio between monitored traces and unmonitored traces is
to ensure that for the classifier there is equal probability in
the testing phase that a trace is a monitored or unmonitored
site. In other words, the base rate is 0.5 in our experiments.
Furthermore, for all experiments we specify the starting Alexa
rank of the monitored sites when simulating sites visited over
the Tor network. We always use the same sample data for
website fingerprinting. The popularity of monitored sites is a
key factor in the effectiveness of our attacks.

Figure 8 shows the recall and precision of our DefecTor
attacks as a function of the percentage of observed Tor exit
bandwidth by the attacker monitoring Alexa sites for sites
whose ranks is 10,000 or less. For recall, both ctw and hp
are bound by the percentage of exit bandwidth observed by
the attacker (the percentage is an upper bound). It is simply
not possible to identify a monitored site in the DNS traffic that
the attacker does not see. At 100% of exit bandwidth, ctw sees
better recall than wf. For hp the results suggest that:

recallhp = recallwf ∗pct. (2)

This relationship only holds when observing DNS requests
gives a clear advantage to hp in terms of precision over wf
(see the following paragraph). For precision, the hp attack has
an immediate gain over wf as soon as the attacker can observe
any exit bandwidth. Although the hp attack has near-perfect
precision, the ctw attack benefits from observing increasingly
more exit traffic, nearly reaching the same levels as hp at 100%
of the exit bandwidth.

Figure 9 shows recall and precision at 100% of observed
Tor exit bandwidth as a function of the starting Alexa rank
of monitored sites (we still monitor 1,000 sites). For popular
websites (i.e., websites with a high Alexa ranking), there is
no difference between our attacks and the wf attack. This
is because even with a window of only 60 seconds, it is
almost certain that at least one user visited any of the most
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Fig. 8. Recall and precision for an open-world dataset with monitored sites
at Alexa rank 10k and lower. We compare our DefecTor attacks (ctw and hp)
to a conventional website fingerprinting attack (wf) for different percentages
of observed exit bandwidth.
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Fig. 9. The recall and precision when varying the starting Alexa rank of
monitored sites for 100 percentage of exit bandwidth.

popular sites over Tor. For sites that rank 1,000 or lower
(i.e., less popular sites), both DefecTor attacks show a clear
improvement in precision while ctw also shows improved
recall—but only at 100% observed exit bandwidth, as shown
in Figure 8. These results paint a bleak picture: an attacker
that observes the vast majority of exit bandwidth can use the
ctw attack as a perfectly precise attack with increased recall
over a traditional wf attack. On the other hand, an attacker that
can observe a small fraction of exit bandwidth can use the hp
attack as a perfectly precise attack on relatively unpopular sites
such as wikileaks.org, which had Alexa rank 10,808 on April
15, 2016. However, Equation 2 suggests that recall will be low.

B. Sensitivity analysis

To better understand the extent and limitations of our
attacks, we now study the sensitivity of our DefecTor attacks
to website fingerprinting defenses, TTL clipping, the growth
of the Tor network, and website popularity distribution. In this
section, we assume that an adversary can observe Tor exit
relays representing 33% of exit bandwidth (as observed on
average by Google) and consider only precision (where we
see clear gain from both our attacks). Note that the following
results largely also apply to weaker attackers that observe a
smaller fraction of exit bandwidth for the hp attack, but that the
ctw attack is more sensitive in terms of precision to different
bandwidth fractions, as shown above. Unless stated otherwise,
we (i) perform our evaluation on websites starting from Alexa
rank 10,000 upwards, (ii) use 2,500 weight-learning rounds,
(iii) have a 60-second window size, (iv) a Tor network scale
of 1.0, and (v) use the conservative power-law distribution from
Section V-A1.

1) Effect of website fingerprinting defenses: The Tor
Project is working on a website fingerprinting defense [38].
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Fig. 10. The effect on attack precision. The defaults are: Alexa from top
10,000, 2,500 weight-learning rounds, 60-second window size, Tor network
scale 1.0, and the conservative power-law distribution (pc) with α = 1.13.

Most defenses produce bandwidth and/or latency overhead,
with a significant increase in overhead as the defense becomes
stronger. For example, Juarez et al. observe an exponential
increase in bandwidth overhead as the protection of the WTF-
PAD defense increases [26, § 4.3]. The goal is to find an
optimum that provides strong protection while keeping the
overhead tolerable for Tor users. To approximate the effect
of fingerprinting defenses on DefecTor attacks, we use Wa-
kNN with random weights and no weight-learning, which
significantly reduces the effectiveness of the attack since some
features (like indices of outgoing packets) are several orders
of magnitude more useful than others [26].

Figure 10(a) shows the effect of weight-learning between 0
and 3,000 rounds. At few to no rounds, the precision for the wf
attack is below 50%—a positive classification is more likely to
be wrong than right—while there is a relatively small impact
on the hp and ctw attacks. For recall, which is not shown in
the figure, the bound and relationship is as in Equation 2: for
wf, at zero rounds, recall is 0.055; for hp at zero rounds, recall
is 0.019. These results suggest that for website fingerprinting
defenses to be effective against DefecTor attacks, the defense
must be tuned to cause low recall even if the parameters of
website fingerprinting attacks are optimized for high recall.

2) Effect of Tor’s TTL clipping: As discussed in Sec-
tion V-A, due to a bug in Tor, all exit relays cache DNS
responses for 60 seconds, regardless of the DNS response’s
TTL. Therefore, a sliding window covering the last 60 seconds
of observed DNS requests suffices to capture all monitored
sites through Tor (subject to the fraction of observed Tor exit
bandwidth, and mapping DNS requests to sites).

Table 3 shows the TTL of DNS records in our Alexa top

Tab. 3. Median and mean DNS TTL values across Alexa top one million
sites. Raw TTLs are unprocessed, as they appear in DNS lookup traces. Tor
TTLs adhere to Tor’s TTL clipping. Unique refers to the TTLs for unique
domains; min unique only considers the unique domains with the minimum
TTL for each website.

TTLs Median TTL (sec) Mean TTL (sec) ± Stddev

Raw 255 9,780.0±42,930.5
Tor 701.5± 755.3
Unique raw 900 13,022.2±35,054.4
Unique Tor 1,005.3± 789.6
Min unique raw 60 3,833.9±11,073.6
Min unique Tor 644.2± 763.8

one million dataset from Section V-B both for the TTL as-is
(raw) and when clipped (Tor). We calculate the intended values
for TTL clipping, assuming that The Tor Project will fix the
aforementioned bug. For each of these cases, we also consider
TTLs for all unique domains, and for only the unique domain
for each website with the lowest TTL. About half of all sites
on Alexa’s top one million have a unique domain with a TTL
of 60 seconds or less; 48% of the raw unique TTLs are below
60 seconds and only 26% above 30 minutes. Fixing the Tor
clipping bug is therefore not sufficient; to mitigate DefecTor
attacks, the minimum TTL should be significantly increased.
In this case, we find that Tor’s TTL clipping has no effect on
the median TTL, but significantly reduces the mean TTL.

Suppose that Tor eventually fixes the DNS TTL bug,
requiring the attacker to monitor DNS lookups for a time
interval equal to the maximum TTL of all unique domains for
any monitored site. Figure 10(b) shows the effect on precision
for different time intervals from 60 seconds to 30 minutes
(Tor’s MAX_DNS_ENTRY_AGE for keeping entries in an exit’s
DNS resolver cache), and for Alexa starting rank 10,000 and
100,000. For ctw, the time interval has a significant effect on
both Alexa starting ranks, while hp is only affected for sites
ranked 10,000 or higher; for less popular sites, the DNS lookup
data still significantly improves fingerprinting precision, even
with the larger window size.

3) Effect of Tor network growth: Figure 10(c) scales the
size of the Tor network with respect to site visits from the
estimated status quo to ten times its size, for Alexa starting
rank 10,000 and 100,000. At twice its current size, the impact
on DefecTor attacks is smaller than increasing the minimum
TTL for DNS caching to three minutes, as shown in Fig-
ure 10(b). These results indicate that DefecTor attacks will
remain practical for many sites in the Alexa top one million,
even as the Tor network grows. If we overestimated the current
Tor network size in the analysis in Section V-A2, our DefecTor
attacks would have even higher precision, as shown by the data
points to the left of the gray line in Figure 10(c).

4) Sensitivity to website popularity distribution: To explore
the sensitivity of our results to different distributions in how
users visit websites, we now evaluate the effectiveness of
DefecTor attacks with four different website distributions:

pc A conservative power-law distribution (with α =
1.13) that we manually fitted to the Alexa top
10,000 data, slightly underrepresenting the pop-
ularity of top Alexa sites. We described this
distribution in Section V-A1.

pr A realistic power-law distribution (with α = 1.98)
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that is the best fit according to the Python
powerlaw library by Alstott et al. [3] for the Alexa
top 10,000 data.

uc A conservative uniformly random distribution
that only considers one million active websites
browsed over Tor.

ur A realistic uniformly random distribution that
considers 173 million active websites, as reported
by Netcraft in July 2016 for the Internet [34].

Figure 10(d) shows the effect on the precision of the hp
attack for the different distributions as we vary the starting
Alexa rank. The uniform distributions always have nearly
perfect precision. The difference between the two power-law
distributions is about one order of magnitude in terms of
starting Alexa rank: the realistic distribution gets near perfect
at 1,000 and the conservative at 10,000. We conclude that
DefecTor attacks are perfectly precise for unpopular sites
because it is unlikely that more than one person is browsing a
monitored site within the timeframe determined by the window
length.

VII. INTERNET-SCALE ANALYSIS

In the preceding sections we have presented our DefecTor
attacks and evaluated their effectiveness, but we have yet to
understand what entities can mount them. In this section, we
aim to quantify the likelihood that any AS is in a position to
mount DefecTor attacks.

A. Approach

Figure 11 summarizes our simulation approach, which we
detail in the next section. In short, we model the activity of Tor
users and simulate their path selection using TorPS [23]. TorPS
returns guard and exit relays, which we then feed as input—
together with source ASes and destination addresses—into our
framework that runs traceroutes from RIPE Atlas nodes. The
rest of this section describes our approach in detail.

1) Attack model: We assume that an AS can mount Defec-
Tor attacks if it can see both traffic entering the Tor network
and DNS traffic exiting the Tor network. Recall that an exit
relay can perform DNS resolution in two ways; by running
a local resolver, or by relying on a third-party resolver, such
as its ISP’s or Google’s public resolver. In the case of exit
relays that perform local resolution, an effective position for
an attacker is both (i) anywhere on the AS path between a
Tor client and its guard relay; and (ii) anywhere on the path
between an exit relay and any of the name servers the exit has

to communicate with to resolve a domain. These name servers
include the full DNS delegation path, i.e., a root name server
plus subsequent name servers in the DNS hierarchy. All ASes
along the path from the exit relay to the name servers will be
able to see the domain names that the exit relay is querying.
For exit relays that rely on third-party resolvers, the adversary
instead has to be on the path between the exit relay and its
DNS resolver.

2) Simulating Tor user activity with TorPS: To measure
the likelihood that an AS can be in a position to perform
a DefecTor attack, we use TorPS [23]—short for Tor Path
Simulator—which mimics how a Tor client constructs circuits
(see “TorPS” in Figure 11). TorPS takes as input archived
Tor network data [42] and usage models, which are sets of
IP addresses that Tor clients talk to—e.g. web servers. Given
this input, TorPS then simulates for a configurable number of
“virtual” Tor clients the way they would select guard and exit
relays. TorPS is based on the Tor stable release in version
0.2.4.23. For each simulated client, TorPS uses one guard;
this guard selection expires after 270 days. We use TorPS to
simulate the behavior of 100,000 Tor clients for the entire
month of March 2016.

We need to place our simulated Tor clients into an AS
(see “Client models” in Figure 11). We selected clients in
major ISPs in the top-five most popular countries of Tor
usage according to Tor Metrics [43]. As of August 2016,
the top five countries are the U.S., Russia, Germany, France,
and the U.K. For the U.S., we chose Comcast (AS 7922);
for Russia, Rostelecom (AS 42610); for Germany, Deutsche
Telekom (AS 3320); for France, Orange (AS 3215); and for
the U.K., British Telecom (AS 2856).

Having placed simulated Tor clients into ASes, we now
model their activity over Tor (see “Usage models” in Fig-
ure 11). We model each client to have visited several websites
every day in March 2016.12 At 9 a.m. EST, the client vis-
its mail.google.com and www.twitter.com. At 12 p.m. EST,
the client visits calendar.google.com and docs.google.com.
At 3 p.m. EST, the client visits www.facebook.com and
www.instagram.com. Finally, at 6 p.m. EST, the client visits
www.google.com, www.startpage.com, and www.ixquick.com,
and at 6:20 p.m. EST, the client visits www.google.com,
www.startpage.com, and www.ixquick.com again. Each of
the 100,000 simulated Tor clients thus had 12 · 31 = 372
opportunities to be compromised given 31 days and 12 site
visits per day. TorPS provided a new circuit every ten minutes,
regardless of how many distinct connections the client made
to different sites; it did not provide a new circuit for different
websites if the client visited the group of sites within the same
ten-minute window.

For simplicity, we assume that only one DNS request oc-
curs every time a client visits a site. For example, in our model,
at 9 a.m. one DNS request will occur for mail.google.com and
one DNS request will occur for www.twitter.com. At 6 p.m.
three DNS requests will occur, and at 6:20 p.m. those same
three DNS requests will occur again. For now, we do not take
embedded requests (i.e. for embedded website content such as
YouTube videos) or caching into account.

12We modeled our client behavior off of the “Typical” model that Johnson
et al. [24, § 5.1.2] used.
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Tab. 4. The coverage of RIPE Atlas nodes that are co-located with Tor
guard and exit relays as of May 2016.

Atlas probe coverage Tor guard ASes (%) Tor exit ASes (%)

By bandwidth 73.59 57.53
By number 50.69 52.25

3) Inferring AS-level paths using traceroutes and pyasn:
Our Internet-scale analysis also requires learning the AS-level
paths from each client to its guard, and from its exit to
the destination (see “RIPE Atlas traceroutes” in Figure 11).
We decided against the commonly applied AS path inference
because Juen et al. showed that it can be quite inaccurate [27].
Traceroutes, in contrast, yield significantly more accurate
paths, but are difficult to run from Tor relays: Past work
involved asking relay operators to run traceroutes on behalf
of the researchers [27, § 4]. This approach yielded traceroutes
from relays representing 26% of exit bandwidth, but does not
scale well. Instead of running traceroutes from Tor relays, we
leverage the RIPE Atlas [39] platform, a volunteer-run network
measurement platform consisting of thousands of lightweight
and geographically spread probes that can be used as vantage
points for traceroutes. Our key observation is that RIPE Atlas
has probes in many ASes that also have Tor relays. We leverage
this observation by designing measurements to run traceroutes
from Atlas probes that are located in the same AS as exit
relays, to each of the destinations in question.

Table 4 shows that for a day in May 2016, we found
that RIPE Atlas had probes in 52% of ASes that contain exit
relays, and in 51% of ASes that contain Tor guard relays.
More importantly, we found that Atlas ASes cover 58% of
exit bandwidth and 74% of guard bandwidth. This statistic is
important given that Tor clients select relays weighted by their
bandwidth, and the bandwidth of Tor relays is not uniformly
distributed. Given the growth of both Tor and Atlas, we expect
these numbers to increase in the future. In addition to Atlas, we
also considered using PlanetLab [1] to initiate traceroutes, but
unfortunately most PlanetLab nodes are located in research and
education networks [6], and are thus not suited for performing
our measurements.

We performed traceroutes from the five Tor client ASes
outlined above to all their respective guard relay IP addresses
that TorPS determined. To measure the paths from exit relays
to their DNS resolvers, we performed the following tracer-
outes, simulating four different DNS configurations:

• ISP DNS: To investigate the scenario in which an exit
relay uses its ISP’s resolver, we chose to represent
this as the resolver being in the same AS as the
exit relay. Thus, no traceroutes were necessary for
this experiment. We acknowledge that this is not
necessarily the case, but assume that it holds for the
majority of exit relays.

• Google DNS: This scenario represents an exit relay
using Google’s public resolver. To measure the AS
path, we perform traceroutes from a RIPE Atlas node
in the AS of the exit relay to Google’s public DNS
resolver, i.e., 8.8.8.8.

• Local DNS: To measure the paths that would be
traversed if an exit relay were running its own, local

resolver (e.g., the popular service unbound), we used
the command line tool dig with the +trace option to
determine the iterative resolution process. We tracked
all name server IP addresses from referrals at each
level of the delegation path, and performed traceroutes
to those IP addresses.

• Status quo: This scenario represents the state of the
Tor network as of March 2016, a combination of
the above three configurations. Recall that in Sec-
tion IV-B, we determined the IP addresses of the
resolvers that exit relays use. We ran traceroutes to
these very IP addresses. For the exit relays that used
several resolvers during March, we randomly assigned
one to the relay. We ended up having data for 73% of
the exit relays that TorPS ended up picking.13

We then mapped each IP address in every traceroute to its
corresponding AS (see “Analysis” in Figure 11). The Python
module pyasn [5] relies on BGP routing tables to perform these
mappings; by using a routing table that coincides with the time
when we performed our traceroutes, we can obtain accurate
AS-level mappings. This method is subject to inaccuracies due
to BGP route hijacks or leaks, but we expect those events to
be relatively unlikely for the time period and IP prefixes that
we are concerned with.

4) Putting it all together: We consider the same two
security metrics that Johnson et al. [24, § 4.2] originally
proposed; we aim to estimate (i) the fraction of compromised
streams per simulated Tor user, and (ii) the amount of time it
would take for the first compromise to occur. For both metrics,
we consider the four DNS configurations outlined above. Our
simulation can reveal the respective average threat that a given
DNS configuration poses for Tor users.

Each traceroutes run yielded two sets of ASes, one from
the Tor clients’ ASes to their guard relays, and one from
approximately half of the exit relays’ ASes to the different
destinations, which depend on the exit relays’ DNS configu-
rations. We intersect both AS sets (the “ingress” and “egress”
hops of Figure 11) and classify a website visit as compromised
if the intersection is non-empty. As stated earlier, for some
exit relays we did not have associated AS-level paths to a
particular destination, either due to a lack of co-located RIPE
Atlas probes, or because of missing traceroute information. In
these cases, we checked if the exit AS had the potential to
launch an attack by itself, and if not, we labelled the stream
as uncompromised to err on the conservative side.

To compute the fraction of compromised streams, we
counted the streams that were compromised for every sim-
ulated user out of a possible maximum of 372. To compute
the time until first compromise, we determined the first stream
in which the user was compromised, took its timestamp, and
calculated the offset from the beginning of March 1, 2016.
For users that were not compromised during the month of
March, we assigned the maximum value of 31 days as the time
until first compromise, which is reflected in the plots in our
next section. Users who were compromised immediately would
have a value of 0, signifying that they were compromised at
the very beginning of March 1.

13The missing 27% are due to the churn in exit relays. Since we did not run
our exitmap experiment each hour, we were bound to miss some exit relays.
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(b) The time until simulated Tor clients got first compromised.

Fig. 12. The fraction of compromised streams and the time until first
compromise for our simulated Tor clients. We placed these clients in five
popular client ASes in the U.S., the U.K., Russia, France, and Germany.
For exit relays, we consider the status quo (on the very right) plus three
hypothetical DNS configurations for all exit relays. We do not plot outliers
beyond the box plots’ whiskers. In both experiments, the safest configuration
is “ISP DNS only,” i.e. have all exit relays use their ISP’s DNS resolver.

B. Results

Figures 12(a) and 12(b) illustrate our results as box plots.
Each figure contains four subfigures, one for each DNS con-
figuration. Each box plot contains five rows, one for each Tor
client AS. For clarity, we did not plot any outliers beyond
the box whiskers. For the fraction of compromised streams,
an ideal setup has its median at 0. For the time until first
compromise, an ideal median is 31. Both figures show that the
“ISP DNS only” setup is the safest for Tor users, i.e., it exhibits
on average the least number of compromised streams while
also on average counting the most days until compromise.
This setup is closely followed by “Google DNS only,” the
status quo, and finally “Local DNS only,” which fares worse
than all other setups. We expected “ISP DNS only” to do best
because if all exit relays use their ISP’s resolvers, there is only
one AS to contend with on the egress side—the exit relay’s.
The Google setup fares similarly well; most likely because of
Google’s heavily anycast infrastructure which minimizes the
number of AS hops. The status quo does significantly better
than the “Local DNS” results, presumably because only around
12% of Tor exit relays actually do their own resolution. The
large variance observed in Figure 12(b) for “ISP DNS” and
“Google DNS” is due to using 31 days as a placeholder for
simulated clients who were never compromised. However, a
safe configuration against AS-level adversaries, which our fig-
ures capture, is not necessarily the best setup for Tor users. For
example, ISP-provided DNS resolvers can be misconfigured,
subject to censorship, or simply be a forwarder to Google’s
resolver, which already serves numerous exit relays and whose
centralization poses a threat to the anonymity of Tor users. We
will explore this trade-off in greater detail in Section VIII.

Interestingly, we find differences in our five client ASes.
These differences are particularly striking in Figure 12(b). For
“Google DNS only,” the median time until compromise differs
by around seven days between DE and UK, and around eight

days between DE and FR. For “ISP DNS only,” the median
time until compromise differs by around six days between US
and DE, and around five days between US and FR. Also, we
notice that DE fares worse than the others in the “Google DNS
only” scenario and better than the others in the “ISP DNS only”
scenario. We conclude that the location of Tor clients matters
and should be considered in future traffic correlation studies.

VIII. DISCUSSION

In this section, we briefly discuss the ethics of our research
and ways to defend against DefecTor attacks.

A. Ethical considerations

In Section V-A2, we discussed setting up an exit relay to
determine the number of DNS requests per five minute interval.
Since our exit relay was forwarding traffic of Tor users,
we contacted Princeton University’s institutional review board
(IRB) before running the experiment. Our IRB deemed that
this research did not fall within the realm of human subjects
research. In addition to contacting our IRB, we adhered to The
Tor Project’s ethics guidelines [29]. Specifically, (i) we ensured
that we only collected data that is safe to publish, (ii) we only
collected data we needed, and (iii) we limited the granularity
of the data to minimize the likelihood of reidentification. The
risk to Tor users of this experiment is negligible. As for the
benefits, by conducting this experiment, we can improve our
understanding of the risks that DNS poses to the anonymity
of Tor users and use this understanding to improve protection
for Tor users in the future. Thus, we believe that the benefits
of our experiment outweigh the risks.

B. Defending against DefecTor attacks

We now discuss ways to defend against DefecTor attacks.
We distinguish between short-term solutions that can be im-
plemented quickly (Section VIII-B1), and long-term solutions
that need significantly more work (Section VIII-B2). Our
discussion of countermeasures is not comprehensive, and we
defer a more detailed analysis to future work.

1) Short-term solutions: Exit relay operators face a
dilemma: they must either operate their own resolver, which
exposes DNS queries to network adversaries; or, they must
use a third-party DNS resolver, which exposes DNS queries
to a third party. Clearly, the goal is to minimize exposure of
DNS requests, but there are several dimensions to this. In lieu
of substantial DNS protocol improvements, we envision three
extreme design points, in which all exit relays use (i) Google’s
DNS resolver; (ii) their own, local resolver; or (iii) the resolver
provided by their ISP.

If all exit relays were to use Google’s public resolver, the
company would obtain metadata about the activity of all Tor
users, which runs counter to Tor’s design goal of distributing
trust. We clearly should avoid this scenario. Fifield et al.’s [18]
censorship circumvention system meek used to use Google’s
cloud infrastructure to tunnel the traffic of censored users
up until May 2016 [17]. While the system was operational,
thousands of meek clients selected exit relays that use Google’s
public resolver, which means that Google saw both traffic
entering and, partially, exiting the Tor network, allowing the
company to mount DefecTor attacks. Next, consider a Tor
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network that only uses local resolvers. In this case, Tor is
fully independent of third-party resolvers, at the cost of each
iterative DNS query being exposed to a diverse set of ASes in
the network, allowing several parties to learn the DNS queries
of Tor users. Finally, all exit relays could simply use their ISP-
provided resolver. This would minimize the network exposure
of DNS requests as resolvers are frequently in the same AS
as exit relays, and AS-level adversaries would be unable
to distinguish between DNS requests from exit relays and
unrelated ISP customers. However, this setup introduces the
possibility of misconfigured and censored DNS resolvers [49,
§ 4.1]. Besides, just a few ASes—OVH, for example—host a
disproportionate amount of exit relays, turning them into the
very centralized data sinks that Tor aims to avoid.

Considering the above, we believe that exit relay operators
should avoid public resolvers such as Google and OpenDNS.
Instead, they should either use the resolvers provided by
their ISP, or run their own, particularly if the operator’s
ISP already hosts many other exit relays. Local resolvers
can further be configured to minimize information leakage,
by enabling QNAME minimization [7]. There likely is a
measurable performance difference between a local resolver
and Google’s resolver, but we believe that this difference pales
in comparison to other performance issues in Tor such as head-
of-line blocking.

Finally, Tor can fix the Tor clipping bug we discovered
and consider significantly increasing the minimum TTL for
the DNS cache at exit relays to make DefecTor attacks less
precise. This adjustment requires finding the longest acceptable
TTL that does not have a notable negative detriment to user
experience. Further, as soon as the clipping bug is fixed,
website operators of sensitive websites can opt to increase the
TTL of their DNS records.

2) Long-term solutions: Additional practical defenses are
on the horizon. Zhu et al. [50] proposed T-DNS, which em-
ploys several TCP optimizations to transport the DNS protocol
over TLS and TCP. The TLS layer provides confidentiality
between exit relays and their resolvers. Finally, site operators
whose users are particularly concerned about safety should
offer an onion service as an alternative. Facebook, for exam-
ple, set up facebookcorewwwi.onion. When connecting to the
onion service, Tor users never leave the Tor network, and hence
do not need DNS—as long as the onion service does not embed
non-onion service content.

Deploying defenses against website fingerprinting attacks
in Tor should be an important long-term goal, as well. Al-
though growing the Tor network will help defend against
DefecTor attacks to some degree, the most important change
is to deploy defenses against these attacks. Since DefecTor at-
tacks significantly increase precision of website fingerprinting
attacks, defenses should be designed to significantly reduce the
recall of website fingerprinting attacks, even when the website
fingerprinting attack is configured to sacrifice precision for
recall.

IX. CONCLUSION

In this paper, we have demonstrated how AS-level adver-
saries can use DNS traffic from Tor exit relays to launch more
effective website fingerprinting attacks, to learn what websites

Tor users are visiting. Mapping DNS traffic to websites is
highly accurate even with simple techniques, and improves
the precision when monitoring relatively unpopular websites.
We further developed a method to identify the DNS resolver
for each Tor exit relay, and found that a set of exit relays
comprising 40% of all Tor exit relay bandwidth use the Google
public DNS servers. Although this concentration of DNS
query traffic reduces the expanse of ASes that can see DNS
query traffic emanating from exit nodes, this configuration
nonetheless gives a single administrative entity considerable
visibility into the traffic that is exiting the Tor network. Tor
relay operators should take steps to ensure that the network
maintains more diversity into how exit relays resolve DNS
domains. To mitigate the risk of website fingerprinting attacks
in light of our work, we suggest that local DNS resolvers on
Tor exit relays implement privacy-preserving techniques such
as DNS QNAME minimization, which minimizes the amount
of information about the domain name that each iterative
query contains. We publish all our code, data, and replication
instructions on our project page, which is available online at
https://nymity.ch/tor-dns/.
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