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ABSTRACT
In 2012, two academic groups reported having com-
puted the RSA private keys for 0.5% of HTTPS hosts on
the internet, and traced the underlying issue to widespread
random number generation failures on networked de-
vices. The vulnerability was reported to dozens of ven-
dors, several of whom responded with security advi-
sories, and the Linux kernel was patched to fix a boot-
time entropy hole that contributed to the failures.

In this paper, we measure the actions taken by ven-
dors and end users over time in response to the origi-
nal disclosure. We analyzed public internet-wide TLS
scans performed between July 2010 and May 2016 and
extracted 81 million distinct RSA keys. We then com-
puted the pairwise common divisors for the entire set
in order to factor over 313,000 keys vulnerable to the
flaw, and fingerprinted implementations to study patch-
ing behavior over time across vendors. We find that
many vendors appear to have never produced a patch,
and observed little to no patching behavior by end users
of affected devices. The number of vulnerable hosts in-
creased in the years after notification and public dis-
closure, and several newly vulnerable implementations
have appeared since 2012. Vendor notification, positive
vendor responses, and even vendor-produced public se-
curity advisories appear to have little correlation with
end-user security.
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1. INTRODUCTION
In February of 2012, Lenstra, Hughes, Augier, Bos,
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Wustrow, and Halderman [21] announced that they had
factored tens of thousands of public RSA keys from TLS
certificates. The latter group traced the vulnerability
to widespread failures in random number generators on
headless, embedded, and low-resource network devices.

While this vulnerability revealed the private keys for
0.5% of HTTPS hosts on the internet at the time, the
immediate security impact on those particular hosts
was likely limited by the fact that the vast majority of
compromised TLS certificates were not browser trusted,
and were automatically-generated certificates protect-
ing web login interfaces on consumer and small-business
grade routers and firewalls, remote server administra-
tion interfaces, and embedded device such as cooling
systems, building monitors, cameras, projectors, and
printers. Rather, the presence of weak keys was an ex-
ternally visible signal that the random number genera-
tion subsystems on entire classes of devices and across
multiple implementations had failed, likely impacting
these systems and many other hosts in a variety of ways.

In this paper, we study the disclosure process under-
taken by the authors of [21] and the aftermath of this
family of random number generation failures. We ag-
gregated publicly available internet-wide TLS scan data
dating back almost six years, including monthly scans
during the past four years from multiple sources. We
give more details on our data sources in Section 3.1. In
order to measure the incidence of vulnerable keys, we
extracted the 81 million distinct RSA moduli found in
these scans and ran a batch GCD algorithm to factor
improperly generated RSA keys. We were able to factor
over 313,000 moduli. (See Table 1.) To carry out such
a large computation efficiently for such a large number
of keys, we modified the algorithm to run in parallel
across a distributed cluster. We describe our computa-
tion in detail in Section 3.2. We then manually finger-
printed vulnerable implementations based on available
metadata, including certificate subjects, certificate sub-
ject alternative names, port scans, and known private
key behavior, as described in Section 3.3, and examine
vulnerability rates over time for user populations asso-
ciated with identified vendors in Section 4.

Previous studies of vulnerability patching have fo-
cused on patching behavior from system administra-
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tors in response to highly publicized vulnerabilities in
OpenSSL [40, 15] or in response to targeted vulnera-
bility notifications [27, 34]. In contrast, the vulnerabil-
ity disclosures undertaken by the authors of [21] were
targeted mainly at vendors of embedded and headless
devices, which are rarely updated by end users.

The widespread nature of the flaw provides us with
an accidental historical experiment allowing us to study
the industry’s response to disclosure by comparing re-
sponses across many vendors. We describe in detail for
the first time the results from the industry-wide dis-
closure process undertaken by the authors of [21]. In
particular, fewer than half of the organizations con-
tacted about the vulnerabilities responded at all to a
best-effort attempt at vulnerability notification.

We also give data on the post-notification internet-
wide vulnerability rates for different vendors in response
to the same vulnerability. Many vendors apparently
continued to ship vulnerable products for years after
receiving notification of and even acknowledging the se-
curity vulnerability, and in some cases after putting out
security advisories for their products. Since the targets
of our study are primarily devices, rather than software
packages, end users must rely on vendors to distribute
updates in order to patch their own devices. We ob-
serve that for this vulnerability, end-user patching did
not appear to occur at all.

The single largest drop in the number of vulnera-
ble keys occurred shortly after the disclosure of the
Heartbleed vulnerability in April 2014. The decrease
in vulnerable keys is confined to a handful of devices,
for which there was an even larger concurrent drop in
the total population of fingerprinted devices, suggest-
ing that while in some cases the publicity may have
prompted device users to regenerate certificates or ap-
ply a patch that also fixed the weak key vulnerability,
many device HTTPS interfaces may instead have simply
been taken offline. In the case of at least one device fam-
ily, Heartbleed vulnerability scans were reported to ren-
der the device non-responsive. This suggests that end-
user device security can improve when vendors patch
vulnerabilities and end users are encouraged to apply
patches or change configuration by widespread media
attention and targeted vulnerability notifications, but
that this process did not occur in response to the vul-
nerabilities we study in this paper.

2. BACKGROUND

2.1 TLS security
In this paper, we focus on RSA as used in the Trans-

port Layer Security (TLS) protocol, which is used for
HTTPS. Several studies have examined the HTTPS [16],
email [14], and other TLS application infrastructures [22].
In the TLS protocol, a server’s RSA public keys are in-
cluded in a server’s certificate, which is transmitted to
the client in response to a client hello message. When

HTTPS host records 1,526,222,329
Distinct HTTPS certificates 65,285,795
Distinct HTTPS moduli 50,677,278

Total distinct RSA moduli 81,228,736
Vulnerable RSA moduli 313,330

Vulnerable HTTPS host records 2,964,447
Vulnerable HTTPS certificates 1,441,437

Table 1: We analyzed six years of internet-wide HTTPS
scans in order to study server behavior over time. Each
host record represents a HTTPS handshake on a given
date with a server at some IP address. We augmented
our batch GCD computation with RSA public keys ex-
tracted from IMAPS, POP3S, SMTPS, and SSH scans,
but excluded these other protocols from further study.

client and server negotiate a cipher suite that includes
RSA key exchange, the client uses the server’s public
key to encrypt session key information; when they ne-
gotiate a Diffie-Hellman or elliptic-curve Diffie-Hellman
cipher suite, the server uses its RSA public key to sign
its key exchange message to prove authenticity. RSA
digital signatures are used to authenticate TLS certifi-
cates; a certificate may be signed by a trusted certificate
authority’s public key or by a certificate chaining up to
a trusted root key, or self-signed by its own public key.

A compromised public key from a TLS certificate
could be used to passively decrypt TLS sessions that
had negotiated RSA key exchange. An active attacker
could use a compromised certificate key to impersonate
a trusted server whose certificate used that key, or to
perform a man-in-the-middle attack to decrypt or mod-
ify traffic using Diffie-Hellman or RSA cipher suites.
74% of the 61,240 vulnerable devices present in our most
recent scan data from April 2016 only support RSA key
exchange, making them vulnerable to passive decryp-
tion by an attacker who is able to observe network traf-
fic. In order for an attacker to intercept network traffic,
they would need to be on the network path between the
victim client and the true server, or use a network at-
tack like DNS or BGP hijacking [8] to force the victim
to connect to the server via the client.

Among the vulnerable devices that we examined, HTTPS
is used primarily to serve remote management inter-
faces. Many of the vulnerable firewalls also use TLS
to encrypt SSL VPN connections. An attacker who is
able to decrypt connections to one of these devices may
obtain administrative credentials for the device or view
remote user traffic to internal network resources.

2.2 RSA and factoring
RSA [31] is the most commonly used public-key cryp-

tosystem on the internet. RSA keys can be used both
for encryption and digital signatures. An RSA pub-
lic key consists of a modulus N , which is the product
of two large primes p and q, and a public exponent e.
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Public Advisory Private Response Auto-Response No Response

IBM Cisco Pogoplug Brocade ZyXEL Emerson McAfee
Innominate Sentry HP NTI TP-Link Fortinet Dell
Intel Technicolor Hillstone Networks Haivision 2-Wire Sinetica D-Link
Juniper AudioCodes Motorola Xerox SkyStream Pronto
Tropos Ruckus Kronos Kyocera BelAir Simton

Linksys AVM JDSU MRV

Table 2: 37 vendors were notified via email in February and March 2012 about weak TLS or SSH RSA key generation
in their products. Only five released a public security advisory. About half of the vendors acknowledged receipt.

The corresponding RSA private key is a private expo-
nent d = e−1 mod (p − 1)(q − 1), which is efficient to
compute if the prime factorization of N is known. If
the prime factorization of N is not known, the most
efficient method known in general to compute an RSA
private key is to factor the modulus N into its prime
factors and use the factors to calculate d.

The most efficient general-purpose factoring algorithm
is the number field sieve, which has asymptotic com-
plexity exp((1.923 + o(1))(logN)1/3(log logN)2/3) [25].
Factoring a 512-bit RSA key using the number field
sieve is within the range of attackers of even modest
resources today [38]; the current public factorization
record is a 768-bit RSA modulus factored by an aca-
demic team over several years, announced in 2009 [24],
and 1024-bit factorization is believed to be within the
range of governments.

2.3 Factoring weak RSA keys
Implementation flaws can allow an attacker to break

RSA much more efficiently. The family of implementa-
tion flaws we study in this paper results in the genera-
tion of RSA moduli that share a single common prime
factor. In that case, one might have two RSA moduli
N1 = pq1 and N2 = pq2 that share the prime factor p
but have different second factors q1 and q2. The two
moduli will appear distinct, but an attacker who can
find such a pair can easily factor both of them by com-
puting p = gcd(N1, N2) and dividing to discover q1 and
q2. These two operations can be performed in less than
one second on a standard modern laptop.

The authors of [26] and [21] discovered such flaws
were widespread by collecting several million RSA pub-
lic keys from publicly available datasets, including HTTPS
certificate scans, PGP key servers, and SSH host scans,
and computing the pairwise common divisors of every
pair of RSA moduli in the datasets. (See Section 3.2.)

Since these original publications, the same technique
has been used to find further vulnerable implementa-
tions: Bernstein et al. [6] found a random number gen-
eration flaw in the Taiwanese national smart card infras-
tructure, and Albrecht, Papini, Paterson, and Villanueva-
Polanco [3] found a large number of weak keys among
export-grade RSA keys for TLS.

2.4 The random number generation flaw
The implementation flaws resulting in these weak keys

appear to have arisen independently in many different
implementations, but [21] points to a common pattern:
on many headless, embedded, or low-resource devices,
the operating system random number generator may
not have incorporated any external sources of entropy
when it is used by an application to generate a crypto-
graphic key. If the key-generation process incorporates
additional low-entropy sources of randomness during
key generation—for example the current time or arriv-
ing network packets—applications running on different
systems may have identical states during the generation
of the first prime factor of the RSA modulus, and di-
verge during the generation of the second prime factor,
resulting in the exact situation described above.

The authors of [21] discovered a boot-time “entropy
hole” vulnerability in the Linux random number gener-
ator, where the output of /dev/urandom could be de-
terministic on boot in real usage, and noted that in this
situation OpenSSL’s key generation behavior could re-
sult in factorable keys. This combination was visible on
many but not all of the affected product families.

The vulnerable factored keys were almost exclusively
confined to network devices, rather than general pur-
pose web servers. Only a handful of the vulnerable
HTTPS certificates were signed by a browser-trusted
CA. While most of the vulnerable hosts were likely low-
value targets, their weak keys are an externally visible
sign of the underlying flaw in the operating system, with
broader security implications for any service on the sys-
tem requiring randomness. This type of flaw is difficult
to detect in a standard unit test framework, making it
difficult for vendors to discover and mitigate in normal
software development practices.

2.5 Responsible disclosure
The authors of [21] notified 61 vendors of the vul-

nerability between February and June 2012. Of these,
37 concerned vulnerable RSA keys, and the remainder
produced vulnerable DSA signatures only. Since our
main dataset consists only of RSA keys, we exclude the
DSA vulnerabilities from further analysis. Among the
RSA vulnerabilities, 28 vendor devices produced vulner-
able TLS certificates, and the rest produced vulnerable
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7/2010 (EFF) 4/2016 (Censys)

TLS Handshakes 11,261,212 38,014,832
Distinct Certificates 5,479,537 10,670,210
Distinct RSA Keys 5,333,832 10,457,597

Table 3: Our dataset includes nearly six years of scans;
we summarize the earliest and latest above.

RSA SSH host keys. A complete list of affected vendors
was never published. The authors first attempted to
contact each vendor individually via email. They were
able to find a security contact, either an email address
or web form, for 13 vendors by searching company web
sites, and in two cases via personal connections. For the
rest, they attempted to email security@domain.com
and support@domain.com. Later, CERT/CC and ICS-
CERT aided in contacting and coordination between
companies. Table 2 lists the vendors who were notified
about weak RSA keys and their responses.

In addition, the authors of [21] notified the main-
tainers for the Linux kernel, who published a patch in
July 2012 including several mitigations against the fail-
ures [36]. In July 2014, Linux introduced the getran-
dom() system call, which outputs nonblocking data only
after it has been properly seeded. This is the desirable
functionality for cryptographically secure random num-
ber generation. [37]

3. METHODOLOGY
In order to examine vulnerability rates over time,

we collected historical HTTPS scan data, extracted the
RSA public keys from server certificates, and performed
a massive batch GCD computation across all of the dis-
tinct RSA keys ever seen in our scans. We fingerprinted
certificates to identify the server implementation.

3.1 Data sources
While weak keys have been found across many public-

key infrastructures, we chose to focus on HTTPS data,
as previous and ongoing measurement studies have pro-
vided a historical record to draw from.

The earliest internet-wide HTTPS scans we are aware
of are the EFF SSL Observatory [18], collected by Burns
and Eckersley in July 2010 and December 2010. These
two scans were performed over the course of two to three
months each, using Nmap [28] to scan for hosts with
port 443 open and a custom Python client to send a
client hello and collect a server’s certificate. We refer
to this dataset as “EFF”.

Heninger, Durumeric, Wustrow, and Halderman [21]
performed an internet-wide HTTPS scan over five days
in October 2011, first using Nmap to scan hosts with
open TCP port 443, and using a custom Python client
to collect certificates over the course of several days.
We refer to this dataset as “P&Q”. Durumeric, Kasten,
Bailey, and Halderman began taking regular scans of
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Figure 1: We aggregated HTTPS scan data from several
sources. The total number of hosts in each scan is shown
above, and the number of hosts serving keys we were
able to factor below.

the HTTPS ecosystem [16] in June 2012 and contin-
ued through January 2014; we refer to this dataset as
“Ecosystem”. These scans used the much faster Zmap
[17] port scanner and a custom certificate fetcher, and
the authors report that a single scan took 18 hours
on average to complete. The scans vary in frequency
from one to over 20 scans per month. Beginning in
October 2013, Rapid7’s Project Sonar [30] took weekly
scans over IPv4 space, also using the Zmap port scanner
with their own custom client implementation to collect
HTTPS certificates. We use their HTTPS data through
May 2015. Finally, Durumeric, Adrian, Mirian, Bailey,
and Halderman [13] have performed daily scans from
July 2015 through April 2016, made available through
the Censys search engine, using Zmap and an integrated
toolchain to collect TLS handshake data on port 443.
The Censys team also performs regular scans of IMAPS,
POP3S, and SMTPS using TLS and SSLv2; we ex-
tracted the RSA moduli for these datasets for use in our
batch GCD calculation, but did not include the certifi-
cates or host records in the rest of our results. We also
included Censys SSH host key data.

In total, our dataset includes 1.5 billion host records,
representing an IP address and certificate pair on a
given date, and 131 million unique certificates. There
are 81.2 million RSA moduli, of which 313,330, or 0.37%
were factored using the methods described in the follow-
ing section. The data is hosted in a MySQL database on
a machine with a fast 6TB SSD cache layer and 28TB
of RAIDed HDDs for backup storage of the scan data.

Figure 1 illustrates the number of hosts seen over
time on port 443 and the number of hosts on port 443
whose public keys we were able to factor. Artifacts from
the different scan methodologies used by each team are
clearly visible. Although most of these sources provided
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Figure 2: To parallelize the batch GCD computation
over a cluster, we divide the input into k subsets and
compute a product only over each subset. For each
subset, we compute the remainder tree with respect to
all subset products. The total amount of computation is
higher, but we achieve a speedup in practice by avoiding
the bottleneck of computing with respect to the very
large products in the center of the tree.

more frequent scans, we chose one representative scan
per month over the time period we examined. In all
figures, each point represents a single scan.

We also found that the Rapid7 data included sets
of intermediate certificates without explicitly chaining
them, while the other scan data either excluded the is-
suer certificates or explicitly chained them. In order to
better correlate our results across datasets, we excluded
these intermediate certificates from our analysis by re-
constructing the chains using common names among all
certificates associated with each IP address and includ-
ing only the lowest certificate in the chain.

3.2 Batch GCD
In order to compute pairwise GCDs across all col-

lected moduli, we adapted the batch GCD implemen-
tation described in [21] 1. This code was originally re-
ported to perform the batch GCD computation on a
set of 11.1 million RSA moduli in 1.6 hours on a 16-
core Amazon cloud cluster compute instance with 60.5
GB of RAM. The batch GCD algorithm is fundamen-
tal to the feasibility of our study: it runs in quasilinear
time over the number of input moduli, while a naive
implementation that simply computes the GCD of all
pairs of moduli runs in quadratic time in the number of
moduli. The computation time required by the latter is
not feasible for the dataset sizes used in this paper.

The algorithm, which is adapted from an algorithm
described by Bernstein [5], has two main phases. First,
it uses a product tree to compute the product of all
input moduli P =

∏
Ni. (A product tree computes

the product of its inputs using a binary tree of multi-

1Available publicly on https://factorable.net.

plications.) Then it uses a remainder tree to compute
zi = P mod N2

i for every Ni. Finally, for each Ni, it
outputs gcd(Ni, zi/Ni). If this value is not 1, then Ni

shares some common factor with at least one other mod-
ulus in the database.

Scaling this calculation to the 81 million moduli posed
some computational challenges. First, the code as writ-
ten was limited to running on a single shared-memory
system, and used threads to run arithmetic operations
in parallel at each level of the tree. Second, the imple-
mentation uses GMP [20] for bignum arithmetic oper-
ations, which are single threaded. This resulted in a
bottleneck at the central node in the middle of the tree,
the product of all 81 million RSA moduli.

To solve both of these problems, we made several
adaptations to the batch GCD algorithm that raise the
asymptotic complexity of the calculation but allow a
speedup in practice. The modified algorithm works
as follows. Instead of computing the product

∏
Ni of

N1...Nn moduli, we divide the moduli into k subsets
and compute the product {P1, . . . , Pk} for each subset.
We then compute a remainder tree for each product
with respect to each subset. Since we pair every prod-
uct with every subset, we are guaranteed to have cov-
erage of all possible pairs of moduli. This part of the
computation scales quadratically in the number of sub-
sets k. For each modulus Ni, this yields k expressions
{P1 mod N2

i , P2 mod N2
i , . . . , Pk mod N2

i }. The algo-
rithm then completes the final step as before, reporting
a modulus Ni as vulnerable if any of the subproducts
returned nontrivial common divisors.

This modification allowed us to parallelize the compu-
tation across a cluster. We ran the computation across a
cluster of six machines with dual 18-core 2.30GHz Intel
Xeon E5-2699 v3 processors and 128GB of RAM each,
eight machines with dual 22-core 2.20GHz Intel Xeon
E5-2699 v4 processors and 512GB of RAM each, and
eight machines with dual 12-core 2.50GHz Intel Xeon
E5-2680 v3 processors and 512GB of RAM each. We
were additionally able to speed up the computation by
storing the entirety of the product and remainder trees
in RAM, where the original hardware used for the com-
putation had limited memory, requiring that the trees
be written to disk.

For the 81 million RSA keys in our database, we chose
k = 16. The entire computation took 86 minutes of
wall-clock time to finish on our cluster, representing
1089 CPU hours. The product and remainder trees re-
quired between 70 and 100 GB of storage on each node.

In contrast, running the original algorithm without
modifications entirely in memory on a machine with
quad 6-core 3.40GHz Intel Xeon E7-8893 processors with
3 TB RAM took 500 minutes and required over 500 GB
of memory to store the product and remainder trees.

3.3 Fingerprinting Implementations
Once we had identified the weak RSA keys in our

database, we linked them to the set of certificates con-
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HTTPS SSH POP3S IMAPS SMTPS
Date scanned 04/11/2016 10/29/2015 04/25/2016 04/25/2016 04/25/2016

Total hosts with public keys 38,014,832 10,730,527 4,533,094 4,544,158 3,292,031
Hosts with RSA keys 37,931,417 6,257,106 4,533,094 4,544,158 3,292,031
Vulnerable hosts 59,628 723 0 0 0

Table 4: We included datasets of RSA public keys on different protocols into our batch GCD computation, but found
that the majority of vulnerable keys were associated with HTTPS. We excluded these other protocols from further
analysis. The scan data above is from the Censys project.

taining these moduli and attempted to identify the un-
derlying implementations using available information.

3.3.1 Certificate subject fingerprints
For many implementations, the certificate subjects

clearly identified a device manufacturer and model. We
identified the majority of host records using certificate
subjects. We observed that for vulnerable implementa-
tions end users typically did not alter the default certifi-
cate values provided by the device, so it was straight-
forward to map from distinguished name to vendor.

For example, the Hewlett-Packard, Xerox, TP-LINK,
and Conel s.r.o. devices generating weak keys in our
dataset all generate certificates containing “O=vendor”
in the distinguished name. We also used the distin-
guished name to directly identify models. Cisco certifi-
cates in particular used the organizational unit section
of the distinguished name to refer to the model of the
device. There were 5,274,287 certificates that identified
a vendor in this fashion.

In other cases, sets of certificates had consistent dis-
tinguished or common names, but did not name a ven-
dor. In some cases, the content being served via HTTPS
for a host of interest was a login or informational page
identifying the vendor and model of the device. For ex-
ample, McAfee’s SnapGear 300 certificate distinguished
name had fields“CN=Default Common Name, O=Default
Organization, OU=Default Unit. . . ”, etc. The content
served over HTTPS for these hosts was the home page
for a SnapGear Management Console. Similarly, ev-
ery Juniper certificate contained the field “CN=system
generated”. We labeled 26,272,330 certificates from 18
vendors using this heuristic.

3.3.2 Fingerprinting prime behavior
We found that in the vast majority of cases, devices

sharing prime factors were identified as the same ven-
dor. We used this information to extrapolate vendors
for some certificates we could not otherwise identify.

We used a heuristic to identify shared prime factors.
For a vendor with clearly identifiable certificates, we
created a pool of all prime factors generated by the ven-
dor. We then examined our set of moduli and set aside
all moduli produced using a prime from the pool. Any
certificate containing one of these moduli, we labeled
as the original vendor. Excepting a few special circum-

stances which we discuss below, this heuristic uniquely
labeled certificates.

In a special case, a bug in the prime-generation code
of certain IBM Remote Server Administration cards and
BladeServer Management Modules led to only nine pos-
sible primes being generated. Every public key associ-
ated with these devices was the product of two of these
primes. [21]. Most of these certificates did not contain
information identifying IBM. We identified 3,229 certifi-
cates using an IBM prime, and labeled them all IBM.

In examining the IBM data, we found an overlap
between a modulus in the vulnerable IBM clique and
devices identified as Siemens Building Automation, an
interface for building-wide operations such as alarms,
time schedules, and HVAC systems. The Siemens-identified
modulus began appearing in February 2013 and con-
tinued to appear in scans throughout the study. This
affected 2,441 certificates. There were 18 vulnerable
certificates identified as Siemens that did not use an
IBM modulus. There were about 15,000 total Siemens
certificates, which we identified using certificate subject
information.

We used extrapolation via shared prime factors to la-
bel certificates associated with Fritz!Box DSL modems.
Many Fritz!Box certificates had a common name with
some subdomain of myfritz.net. Others filled in the
alternative name with identifiable domain names:
DNS:fritz.fonwlan.box, DNS:fritz.box,
DNS:www.fritz.box, DNS:myfritz.box,
DNS:www.myfritz.box. These were easy to identify.
However, there were tens of thousands of certificates
whose certificate subject identified only an IP address
in octets. We labeled these as Fritz!Box if they shared a
common prime factor with certificates fingerprinted via
certificate data or Nmap host identification. We were
able to label 20,717 certificates as Fritz!Box using these
heuristics.

We also found an overlap in shared primes between
Xerox and Dell certificates. On closer examination, we
found that a set of machines with a certificate subject
containing“OU=Dell Imaging Group”all shared primes
with Xerox devices. In 2004, Dell announced a partner-
ship with Fuji Xerox, which specializes in imaging tech-
nologies [23]. Later, reviews of Dell printers claim they
are manufactured by Xerox [11]. This overlap affected
416 certificates.

54



3.3.3 Internet Rimon Man-in-the-Middle
In attempting to identify shared implementations via

shared cryptographic keys, we discovered that an Is-
raeli ISP, Internet Rimon, was substituting its own RSA
modulus into the self-signed certificates being served by
the internet-facing services on devices belonging to its
customers. Only the public key and the signature (as
well as the choice of hash function used in the signa-
ture) were changed; the rest of the certificate remained
unchanged. Internet Rimon offers an opt-in content fil-
tering service for its customers via installation of a root
certificate on the customer’s machine, but this is the
first case we have seen of an ISP man-in-the-middling
inbound encrypted connections to its customers’ devices
by substituting their public keys for a fixed key of its
own. We saw 922 distinct IP addresses with this key,
appearing in scans throughout the entire study period.

We did not factor the 1024-bit RSA modulus used by
Internet Rimon.

3.3.4 Fingerprinting OpenSSL primes
Mironov [29] observes that OpenSSL uses a distinc-

tive method of prime generation that eliminates primes
p such that p − 1 is divisible by any of the first 2048
primes. He estimates that the probability that a ran-
domly chosen 512-bit prime satisfies this property is
about 7.5%. This property would also be satisfied if an
implementation only generated “safe” primes (a prime
p where (p − 1)/2 is also prime). We found that none
of our labeled vulnerable vendors produced exclusively
safe primes, although they do arise in the dataset by
chance. We did not find any vulnerable implementa-
tions producing exclusively safe primes, suggesting that
the property is a true OpenSSL fingerprint.

We can use this property to identify implementations
as likely OpenSSL and definitely not OpenSSL by exam-
ining the fraction of prime factors of weak keys that sat-
isfy this property. If an implementation uses OpenSSL
to generate primes, every prime factor pi for every mod-
ulus associated with this implementation should satisfy
pi 6= 1 mod qi for each of the 2048 primes checked by
OpenSSL. If an implementation is not OpenSSL, we
would expect that only a small fraction of the prime
factors associated with this implementation would sat-
isfy this property.

We found that 71,417 of the certificates with weak
keys were not OpenSSL, about 5% of all certificates with
broken moduli. Table 5 categorizes vendors according
to this OpenSSL fingerprint. Because the fingerprint
requires the private key, it only covers models gener-
ating vulnerable keys. For vendors like Juniper where
we cannot distinguish different product models, we can
only state that there exists a non-OpenSSL implemen-
tation generating weak keys.

3.3.5 Bit errors
107 (0.03%) of the 313,330 vulnerable moduli in our

Satisfy OpenSSL fingerprint Do not satisfy

2Wire IBM DrayTek
AdTran Innominate Fortinet
Allegro Linksys Huawei
BridgeWave McAfee Juniper
Cisco MitraStar Kronos
Conel s.r.o. Netgear Siemens
D-Link NTI Xerox
Dell Sangfor ZyXEL
Fritz!Box Schmid Telecom
HP ServerTech
TP-LINK SkyStream Networks

Thomson

Table 5: OpenSSL uses a distinctive prime generation
process that allows us to use the primes in a private
RSA key to distinguish vendors who are likely using
OpenSSL to generate keys from those that are not. We
classified device vendors from our TLS scan data.

database are not the product of two equal-sized primes,
that is, they are not well-formed RSA moduli. These
corresponded to 113 certificates in our database. In
many cases, this appeared to be due to bit errors. For
example, we found 11 different “certificate authority”
certificates in our database with non-well-formed RSA
keys that were at least one bit error from a nearly iden-
tical valid certificate. (In the case of the certificates
with errors, the signatures of course will fail to verify.)
One or more bit flips in a valid RSA modulus would
be expected to produce a random integer; this integer
would be divisible by some prime qi with probability
1/qi. Thus such bit errors are likely to show up in the re-
sults of our batch GCD computations with divisors that
are the product of many small prime factors. Anecdo-
tally, such errors have been observed to appear in other
large key corpuses such as the PGP keyservers. [7]

We set these cases aside and did not treat them as
indicators of a flawed implementation, since they could
have resulted from memory errors on the host, errors
on the wire, or errors during storage or download of
the datasets. A small portion of these certificates were
presented multiple times by the same hosts across scans.
Most, however, were seen exactly once, indicating some
error with the transmission or storage of the key.

4. RESULTS
In this section, we examine the behavior of vendor

devices based on the company response to the vulnera-
bility disclosures by the authors of [21].

4.1 Vendors that released a public disclo-
sure

Five companies released public security advisories for
TLS vulnerabilities2.
2https://factorable.net/advisories.html
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Figure 3: The number of vulnerable Juniper hosts con-
tinued to rise for years after Juniper’s published security
advisories and public disclosure. The single largest drop
in the number of both vulnerable and total number of
fingerprinted hosts occurred during April 2014, which
correlates with the disclosure of Heartbleed, marked
with a vertical line.

Juniper, whose products represented the majority of
factored keys in 2012 and the second highest number
over all scans, released a public Security Bulletin in
April 2012 and an Out-of-Cycle Security Notice in July
2012 announcing that the weak key vulnerability had
been internally discovered and fixed. The exact de-
vice model is not apparent from the certificate data
or the HTTPS login page, but Juniper has identified
the vulnerable models as SRX branch security devices.
Juniper certificates do not identify device models, and
the default certificate matching our fingerprint can be
generated by different Juniper models. We generated a
certificate on a Juniper SSG5 security platform running
ScreenOS that has the same fingerprint as the Juniper
certificates in our scan.

Our data shows that that the number of vulnera-
ble hosts continued to increase for two years follow-
ing disclosure, and end-user patching was minimal at
best. (Figure 3.) In order to better understand patch-
ing behavior, we examined the vulnerability status of
fingerprinted Juniper hosts in more detail. Over the
entire course of our scan data, we observed 169,000 IP
addresses serving a fingerprinted Juniper certificate, of
which 34,000 hosts served vulnerable keys. Of these,
1,100 hosts transitioned from a certificate containing a
vulnerable key to a certificate containing a non-vulnerable
key, 1,200 transitioned from a certificate containing a
non-vulnerable key to a certificate containing a vulner-
able key, and 250 transitioned between vulnerable and
non-vulnerable certificates multiple times.

There is an abrupt decrease in the number of finger-
printed Juniper hosts, both total and those generating
weak keys, between April 2014 and May 2014. Juniper
released four security advisories in April 2014 for vari-
ous vulnerabilities, including a patch for the OpenSSL
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Figure 4: The number of broken Innominate mGuard
hosts increased from the original 2012 notification and
has stayed mostly consistent during the four years since
the public security advisory.

“Heartbleed” issue on April 23, 2014 [1]. The security
advisory states that the SRX branch devices identified
as generating vulnerable keys were not vulnerable to
Heartbleed.

During the aftermath of Heartbleed, nearly 30,000
Juniper-fingerprinted hosts went offline entirely, includ-
ing over 9,000 vulnerable devices. This suggests that de-
vice owners disabled TLS on port 443, blocked external
scans, or took devices offline in response to Heartbleed.
Anecdotal reports suggest that Juniper NetScreen fire-
walls crashed when scanned for Heartbleed [39].

Innominate, now Phoenix Contact Cyber Security,
manufactures security appliances for industry settings.
In June 2012, they released a security advisory about
weak keys in mGuard network security devices. Since
the notification and advisory, the number of vulnera-
ble mGuard hosts has remained roughly fixed. Out of
561 IP addresses that ever served vulnerable Innomi-
nate certificates, two hosts served non-vulnerable In-
nominate certificates and transitioned to a vulnerable
public key in subsequent scans, three served vulnera-
ble certificates and transitioned to non-vulnerable cer-
tificates in subsequent scans, and one host transitioned
from non-vulnerable to vulnerable and back again. Over
the time period covered by our scan data, the total num-
ber of Innominate-fingerprinted devices has risen (Fig-
ure 4), suggesting that the vulnerability has been fixed
in newer devices, but the population of originally vul-
nerable devices continue to serve vulnerable certificates.

IBM BladeCenter Management Module and Remote
Supervisor Adapter II cards generated only 36 possible
public keys from 9 possible prime factors, as described
in Section 3.3. 99.5% of the certificates we were able to
identify as one of these IBM products contained these
moduli. IBM published a security advisory (CVE-2012-
2187) in September 2012. Nearly all certificates con-
tained non-fingerprintable identifying information from
the organizations themselves, although we found 51 cer-
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Figure 5: We fingerprinted IBM Remote Supervisor
Adapter II and BladeCenter Management Modules us-
ing the 36 possible public keys that could be generated
by these implementations. The vulnerable population
appears to have been decreasing already by 2012, and
shows a marked decrease at the time of the Heartbleed
vulnerability in April 2014.

tificates labeled as Remote Supervisor Adaptors. For
this reason, we do not have an estimate of the total
population for these devices. Figure 5 shows the num-
ber of vulnerable hosts over time; the vulnerable pop-
ulation appears to have already been decreasing at the
time of disclosure in 2012, and drops sharply in April
2014, corresponding to the Heartbleed disclsosure.

Examining certificate lifetimes and replacement on
each host suggests that the vulnerable population of
IBM devices was decreasing because devices (or their
publicly accessible web interfaces) were taken offline al-
together, and not because users patched the vulnerabil-
ity and renewed their HTTPS certificates on the same
device with a non-vulnerable public key. Among the
1,728 IP addresses that ever served a certificate con-
taining one of the vulnerable IBM primes in any of
our scans, 350 served a certificate during any of the
scans that did not contain a vulnerable public key. The
varying subjects of these new certificates indicated that
these new certificates were due to IP churn.

Intel and Tropos released public vulnerability disclo-
sures in the aftermath of [21], but these vulnerabili-
ties concerned vulnerable SSH host keys on port 22, for
which we do not have comprehensive data. Moxa also
released a public disclosure for a vulnerability in DSA
signatures, which we do not address in this study.

4.2 Vendors that responded privately
Several companies responded substantively to the vul-

nerability notification but did not release a public an-
nouncement.

Multiple lines of Cisco small business products gen-
erated weak keys. As mentioned in Section 3.3, most
Cisco certificates clearly identified full model names in
the certificate distinguished name, so we were able to la-
bel 81% of certificates (and 91.5% of broken certificates)
with a model. Although Cisco responded in private to
the vulnerability notice, they never released a public se-
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Figure 6: The number of broken Cisco hosts (bottom)
increased steadily through 2014, although it has begun
to decrease in the past year.

curity advisory and do not appear to have patched the
vulnerability for several years, as the number of vulner-
able hosts continued to increase for the next three years.
(Figure 6.)

The detailed model information in Cisco certificates
allows us to study the effect of end-of-life announce-
ments on device populations in the wild. Of the 14
vulnerable models we labeled, 10 have released an end-
of-life announcement with a final sale date before May
6, 2016. We found that the end-of-life announcements
marked the beginning of a slow decrease in the total
number of devices online. We also note that the end-
of-life announcement typically preceded the end-of-sale
date by several months. (Figure 7.)

HP’s Integrated Lights Out out-of-band management
cards generated weak keys. The number of vulnerable
hosts appears to have peaked in 2012, and has been
decreasing steadily since, as shown in Figure 8. There is
a notable drop in the number of vulnerable hosts as well
as the total number of HP hosts in the months after the
Heartbleed disclosure in April 2014. HP iLO cards were
reported to crash when scanned for Heartbleed [39].

The population of other vendors’ devices in this cat-
egory was too small to draw conclusions from.

4.3 Vendors that never responded
Figure 9 illustrates the fingerprinted populations and

number of vulnerable hosts for ten vendors who did
not respond to the vulnerability notification. In most
cases, the population of vulnerable hosts is declining
gradually, outside of apparent differences due to differ-
ent scanning methodology across our datasets. Four of
these vendors (Thomson, Linksys, ZyXEL, and McAfee)
show a decline in the vulnerable population that closely
tracks the decline in the overall number of hosts with
that device fingerprint. Fritz!Box shows a marked in-
crease in the vulnerable population before an eventual
decline, suggesting that the vulnerability may have been
fixed for new devices at some point in 2014.
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RV220W

RV180/180W

SA520/540

Figure 7: We found that Cisco’s end-of-life announce-
ments for their most popular small business routers gen-
erally mark the start of a gradual decline in the de-
vice population. We identified vulnerable hosts associ-
ated with all the device models in this figure except the
RV082.

4.4 Newly vulnerable products since 2012
Several companies had no or very few vulnerable de-

vices in 2012, but appear to have since released prod-
ucts with the random number generation vulnerability.
These newly vulnerable hosts are responsible for the ris-
ing number of vulnerable hosts visible over the past year
in Figure 1.

The first vulnerable Huawei hosts appeared April 2015,
and the population has increased dramatically (Figure
10). An examination of their certificates did not reveal
a specific model. However, the certificates all identify
a business unit in India, while 84% of the total pop-
ulation of Huawei certificates matching our fingerprint
identify India. We contacted Huawei via their vulnera-
bility reporting web page in May 2016. They responded
to our notification and released a security advisory and
software update in August 2016.

D-Link was contacted about HTTPS RSA vulnera-
bility in 2012 and did not respond to the original noti-
fication. In 2012, the population of vulnerable devices
was small, but has since increased dramatically. We
contacted D-Link in May 2016 via their vulnerability
reporting web form and have not received a response.

ADTRAN was notified in 2012 about DSA vulnera-
bilities in SSH and responded at the time. The vulner-
ability for HTTPS RSA keys seems to have been newly
introduced in 2015. We contacted ADTRAN using the
customer support form in May 2016. They responded
substantively to our new notification, but have not yet
released a public advisory or informed us of a software
update.

We attempted to contact Sangfor using the customer
support web form, but the request was closed.

The only contact we could find for Schmid Telecom
was an Information Request web form; we did not re-
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Figure 8: HP iLO out-of-band management cards re-
portedly crashed when scanned for the Heartbleed vul-
nerability. There is a noticeable decrease in the total
population of HP products in the months following the
Heartbleed disclosure.

ceive a response to our notification. Schmid Telecom is
a multinational company, but all their vulnerable cer-
tificates identify an Indian subsidiary.

5. DISCUSSION
Our data, viewed as a collection of individual anec-

dotes on vendor responses to a security vulnerability,
illustrate the challenges faced by all parties in the vul-
nerability disclosure and mitigation process. From the
perspective of the reporting party, the disclosure re-
ceived no substantive response and no acknowledgement
of a deployed fix for years for most vendors who were
contacted. While the decline of the vulnerable popula-
tion for many of these vendors suggests that their newer
product versions are no longer naively vulnerable, this
decline took years to become visible in the data. From
the vendor side, the recent introduction of several newly
vulnerable products illustrates how difficult it can be to
keep old bugs out of new products.

5.1 Vendor notification processes
There is considerable debate in the security research

community as well as among policymakers about the
ethics of public disclosure of security vulnerabilities.
The norm in the academic research community is gen-
erally “responsible disclosure” [2, 12] in which the re-
searcher notifies the vendor before going public. How-
ever, the attempted notification of several dozen ven-
dors studied in this paper shows how this process can
fail at multiple stages. Most of the vendors did not have
security contact information publicly available. We found,
between our disclosure process and in [21], 16 out of 42
vendors had a discoverable point of contact for reporting
vulnerabilities (see Sections 2.5 and 4.4 for details). The
majority of vendors who were contacted in [21] never re-
sponded to the notification at all. The majority of those
vendors who did respond in some way never released a
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Figure 9: Many companies never responded to the vulnerability disclosure at all. In the above cases, the population
of vulnerable hosts seems to be declining over the past several years.
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Figure 10: Some vendors had few or no vulnerable hosts
in 2012, but appear to have released a vulnerable prod-
uct version since then.

public security advisory. These figures were repeated
on a smaller scale four years later in the more limited
security disclosure process we undertook for this paper.

Reporting vulnerabilities through an organization such
as CERT/CC is a potential alternative to directly con-
tacting vendors. Arora et al. [4] found that response
time from vendors decreases when reporting through
such an organization. However, Li et al. [27] found that
some CERT organizations did not follow up on the end-
point vulnerability disclosure information they shared,
and concluded that reporting vulnerabilities through
CERT organizations appeared to be of limited utility.

Despite the lack of organized vendor response, the
eventual declining vulnerability rates for most vendors
suggest that ultimately the underlying vulnerabilities
were fixed for most new devices after several years. We
hypothesize that this is likely due to newer products
using updated versions of the Linux kernel that incor-
porate the software mitigations introduced by the main-
tainers in 2012. It remains an open problem to design
an experiment to test this hypothesis.

Recommendations.
Software and hardware vendors should provide a ded-

icated means of contact for security vulnerability noti-
fications, and when possible, an explicit statement of
procedures concerning security vulnerabilities. Such a
process should include a default timeline for public dis-
closure, acknowledgments, and a bug bounty policy for
certain classes of flaws [19]. Alternatively, researchers
can take advantage of the well-defined public disclosure
process and vendor coordination provided by organiza-
tions like CERT/CC. In addition to providing a dedi-
cated contact point, CERT/CC vulnerability disclosure
policy includes a default 45-day deadline for public dis-
closure. In the case of the process we studied, coordina-
tion via CERT resulted in at least two additional public
security advisories.

We leave it as an open problem to design mechanisms
to incentivize vendors to use the most up-to-date ver-
sions of operating systems and libraries in their prod-
ucts, in order to avoid old vulnerabilities reappearing in
new products, as we observed in Section 4.4.

5.2 Scoring and predicting vendor responses
Our data does not appear to show any correlation

between company size or customer population and re-
sponse to vulnerability notification, nor between vendor
response and end-user vulnerability rates.

Future work might study in more detail the variables
leading to different vendor responses, and design regu-
latory, economic, or commercial incentives to promote
more effective security policies among vendors.

5.3 End-user patching behavior
In principle, our dataset should allow us to study end-

user patching behavior, but this requires software and
hardware vendors to make patches available. Only three
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vendors with HTTPS RSA vulnerabilities (Juniper, In-
nominate, and IBM) released a public security advisory
and patch for the vulnerability in 2012, so our visibility
into end-user patching behavior is limited.

Nevertheless, our data suggests that end user patch-
ing rates were low to nonexistent, and that decreases in
the vulnerable populations were due to devices or their
web interfaces being taken offline altogether. This does
not seem to be due to devices being entirely unmain-
tained, as we see clear evidence of a drop in the vul-
nerable populations around the time of the Heartbleed
disclosure, suggesting that publicity campaigns around
vulnerabilities are both effective at changing user be-
havior, as observed previously [15], and that such cam-
paigns can have unintended consequences. Since we do
not see such significant events elsewhere in the dataset,
nor even a declining trend in the vulnerable populations
for Juniper or Innominate devices, it appears that most
users do not have a regular patching process in place,
and that widespread patching or mitigation for security
flaws in these types of devices is a rare event.

We hypothesize that a major contributing factor to
the lack of observed patching is that this vulnerability
largely affected web interfaces for devices rather than
web services. The low patch rates have distressing im-
plications for the security of the “internet of things”.
Yu et al. [41] survey a number of critical vulnerabilities
that remain unpatched across hundreds of thousands of
devices in the wild.

Previous work on end-user patching rates [40, 15] for
TLS vulnerabilities and vulnerability notifications [27,
34] have focused on system administrator behavior for
web sites. In contrast, the families of devices affected
by the random number generation vulnerabilities in our
study fall into three broad classes: industrial control
systems and critical infrastructure, router and firewall
products aimed largely at the small business market,
and cable and DSL modems and WiFi routers largely
aimed at individual consumers.

Recommendations.
Our results show that public disclosure and patching

of security vulnerabilities does not suffice to ensure end-
user security. Additional processes will be necessary
to ensure patches are deployed to consumers. The de-
sign of appropriate and effective software update mech-
anisms and incentives will likely depend heavily on the
end users of the device.

For consumer-grade products, multiple studies have
shown that individual users are unable to effectively
evaluate security concerns (e.g. [9, 33]), and will tend
not discover or apply patches. For these cases, actively
pushing updates to devices is likely the most effective
security update policy. Such a policy has significant
drawbacks, however: software updates may produce un-
intended side effects or even brick devices [10]. There
is evidence that most users will eventually apply op-
tional patches that are pushed to devices they inter-

act with regularly: Thomas et al. [35] found that half
of all Android devices were updated within 30 days of
a patch becoming available via Android’s over-the-air
push mechanism, and 95% within a year. However,
many internet-of-things devices will likely lack a good
interface for users to manage such updates, so designing
a usable update mechanism remains an open problem.

In the case of devices aimed at small or medium busi-
ness consumers, we recommend that vendors encourage
customer IT staff to adopt a “Patch Tuesday”-type pol-
icy for device updates as well as software products. This
requires vendors to remain on top of upstream software
updates for the software stacks used in their products,
and push or make available updated software versions
in a standardized manner to customers. The positive
responses by system administrators to active notifica-
tion of software vulnerabilities [27, 34] and the effects
of end-of-life policies on vulnerable device populations
discussed in Section 4.2 suggests that they may be re-
ceptive to active update notifications from vendors.

The process of applying software updates to indus-
trial control systems and critical infrastructure can be
complicated by operational, regulatory, and legal con-
siderations. It remains an open problem to design an
effective software update mechanism that balances secu-
rity and reliability of critical systems in this framework.

5.4 Ethics and responsible disclosure
Detailed information on the random number gener-

ation vulnerabilities studied in this paper, the efficient
batch GCD implementation, and the data sets used in
this paper have all been publicly available for years.

The majority of the vendors discussed in this paper
were directly notified of the vulnerability in 2012. In the
course of this research, we discovered five vendors who
appeared to have introduced newly vulnerable products
since 2012. We attempted to notify these vendors of the
new vulnerability in May 2016. Only two companies
have acknowledged receipt of our disclosure. Huawei
released a public security advisory and software update
in August 2016. The vulnerability was assigned CVE-
2016-6670. We give more details in Section 4.4.
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