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Abstract. We present a method to solve integrr polynomial equations 
in two variables, provided that the solution is suitably bounded. As an 
application, we show h o w  tu find the factors of N = PQ if we are given 
the high order ((1/4) log, N) bits of P. This compares with Rivest and 
Shamit's requirement of (( 1/3) log, N )  bills. 

1 Introduction 

We present a method t,o solve a polynoniialequa.tioii p ( x ,  y) = 0 over Z, provided 
t8ha.t8 t>lie solution is suitably bounded: Is/ < X and 1y1 < Y ,  with X, Y depending 
on the coefficient$s and degree of p .  

Our algorithm uses lattice basis methods [2]. It is similar in spirit to [I], 
which solved quat.ions in one variable in (H mod N ) ,  but, t,hc present algorithm 
requires a dilferent analysis. 

We require bounds A- and E' on the absolute values of e a,nd y in our solution. 
Suppose p ( x ,  y) has degree S iri each variable, and p ( x ,  y) = C . .  p i j x i $ .  Define 
D = nia.s;j lpijl,YiYj as t,he largest possible term in p(z,y) in the region of 
interest. Then we will find a bounded solution (2, y) (if it exist,s) provided that  

a? 

x y  < / y / t : j 6 J  

For fixed degree 6 ,  t81w algorit,hm runs in t,inie polynomial in (log 11). 
Similar nir:lliods ca.n be applied to the mult8ivariatje case hut' are not, assured 

of si~ccess; t,lie proof breaks down a t  a crit>ical point. 
Our ir~imediat~c application, and the framework in which the algorit,hm is 

described, is t8he problem of factoring an irikger when we know the high order 
bits of it,s fa.ctors. If we know N = PQ and we know tmhe high order (i log, N )  
hits of P ,  then b y  solving t,he equation (PO + .r)(Qo + y) - N = 0 over a suitable 
range of c and y we can find the factorization of N .  By comparison, Rivest 
and Shamir [5] need about (4 log, N )  bits of P .  This has applications to  some 
RSA-based crypt,ogrxphic schemes; see for example [7]. 

wc give here a sket,ch of our algorithm. Define integer variables l'gh represent- 
ing zg yh . Form the lattice of those values of { r g h }  sat,isfying several polynomial 
rrla,t,ions g i j ( s ,  y) = x i $ p ( z ,  y) = 0 under this interprctat.iori. Claim that the 
lattice elernent s corresponding t o  our desired solution is rclat,ively short (less 
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than the nth root of the determinant of a certain mabrix). The expression of s in 
terms of a. reduced basis of our lattice cannot involve the longest basis element 
(because s is short), so s is confined to the hyperplane spanned by the other 
basis elements. Tliis gives a linear equation 011 { r y h  = zgyh}, which we interpret 
as a polynomialequation on z and y.  We combine this with p ( z ,  y) = 0 and solve 
for .c(l and yo. 

The remainder of the paper is organized as follows. In Section 2 the algo- 
rithm is developed, concenhating on the coiicrele case where y ( z ,  y) has degree 
1 in each variable. Section 3 gives a brief discussion of linear la,ttice methods as 
a.pplied to the non1inea.r problem of solving polyiiomia.ls. In Section 4 we extend 
tBlie algorithm to other bivariate polynoiiiials, and discuss the dependence on the 
size paranirtnr L )  and degree 6 of the polynomial p. We comment on possible 
extmsions t,o three or more variables in Scction 5. In  Sections 6 and 7 we com- 
pare t,he current algorit,lim with previous ones. An applicat,ion to Vanstone and 
Zuccherato’s RSA variant is given in Sectiori 8. The appeiidix proves a technical 
result 011 Toeplit#z matrices. 

2 Factoring with high order bits known 

We present the algorithm in terms of the problem of fact,oring an integer when 
we know t,ht: high-order bits of one of the factors. 

Suppose we know N = P Q ,  and suppose t>hat for some E > 0 we know the 
high order ( f  + ‘)(log2 N )  bits of P .  (We will dispense with t,he c later.) By 
division we know the high order bits of Q as well. 

P=Po+.uo 
Q = & o + Y o  

1x01 < x = P,/N(’/4)+< 

P ( X ,  Y) = (Po + .,(Qo -I- Y) - N 

(1/4)+c l ~ o l  < Y = Qo/N 

= (PoQo - N )  + &or + Poy + zy 
~ ( z o ,  YO) = PQ - N = 0 

Here Po and Qo are known, while zo and yo a.re unknown, and z and y are 
dummy variables. p (  ;6, y) is an irreducible po1ynomia.l with integer coefficients, 
and its coefficients share ILO common faclor. 

We will relak t,he bounds ,X and E’ t,o the qriaiit,it,y 

D = max{ 1 PoQO - N 1 ,  Qo-Y, POY, XY} . 

This is t,he largest possible size of an individual term of p ( x ,  y) with bounded z 
and y. For our methods to work, we will require (,YY)‘/’ < D. In the case of 
a more general polynomial p ( z ,  y) = cij p ; j z i f ,  of degree 6 separately in each 
variable, we would define 

D = ?ax{ lpdj ISSZ’’} 
ZJ 
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and dernaticl (S’I’)3*/’ < D. (The definitions of A-, E; D a.ppear circular, h i t  
it’s all right; t’he condition is equivalent, to existence of indices i ,  j 5 5 such 
that 1y(3*/’)-iy(3”’)-j < lpij 1 ,  and t,hc exponents (36/2) - i arid (35/2) - j are 
strict 1 y positive . ) 

We are t,rying tlo find a bounded pa.ir of int,egers (ZO, yo) solving p(z0, YO) = 0. 
We hegirl by select,ing ail int,eger k > 1 / ( 4 ~ ) .  For each pa.ir of integers ( i , j )  with 
0 5 i < k arid 0 5 j < k, form the polynorriial q; j ( .c,  y) = s i $ p ( z ,  y). Obviously 

Form a matrix M I  with (k+ 1)’ rows, indexed by r ( g l  h )  = (k + l)g + h wit8h 
0 5 g ,  h < k+ 1. MI has ( k +  1)’ + k’ columns, t,he left-hand columns indexed by 
7 , ( g ,  h ) ,  and t,he right-hand columns indexed by p ( i , j )  = ( k  + 1)’ + ki  + j with 
0 5 i ,  j < k. The left-harid block is a diagonal matrix whose (y(g, It), y(g, h ) )  
mt,ry is given by X - g Y - h .  The (y(g, h.) ,  ,fj’(i, j)) entry of t,hc right-ha.nd block is 
t8he coefficient, of r g y h  i n  the polynomial qaj(z, y). 

An explariat,ion of A41 is in order. The  y(g, h )  row corresponds to an integer 
uiiktiowti l’gh, which rc~prcsctits .r:yyoh. In the left-hand block, the diagonal entry 
y - g  11 - h will tw used t,o bound IrSh I by approximat,ely S g  Y t L .  We will be con- 
cent,rat>ing on t,he suhlallice in which the right-tiand columtts are zero; a zero in 
coliinin D( i ,  j )  will correspond t,o the contlit,ion q i j ( z 0 ,  yo) = 0. 

I’crforin clcincntmy row operat,ions on M I  to produce a matrix Ad2 whose 
right,-liand hlock lias (,lie k’ x k’ identity mat.rix on t,he bot,torn arid the ( 2 k  + 
I )  x k T 2  zero matrix 011 t,he top. We can do t.his because Ihe corficient of zy in 
p is 1, so t,liat, t,he right,-hand block of Ail, contains an upper triangular matrix 
with 1 on t,he diagonal. (For a. more general polynomial p ( z ,  y ) ,  we require tha t  
the coefficient-s of 1’ slia.re 110 nontrivial common fa,c,t,or; in otJher words, p(r, y) 
does not fact,or a,s k x u(.r,y) over Z.) 

The lat,t,ice forincd by t,hese t,op 2k + 1 rows of AT, is the sublatt,ice of the  
original 1allic.e got,len by forcing t,o 0 all the right-hand colu~nns. Call it  M3. 

C!onsidrr t.he ( A :  + l)’-long row vector r whose ~ ( g ,  h )  crit,ry is ziyt. ‘I’he row 
vcct,or s of Irngth ( k  + I)’ + k’ given by s = rMl satisfies 

q i j ( z0 ,  YO) = 0. 

S y ( g , h )  = (z,l/~qy(yo/)’)h 

S P ( i , J )  = Q 7 j ( ~ o , ? / o )  = 0 
ISr(y,h)l 5 1 

Is1 < k + 1 

B m m e  it,s right-hand sidc is 0 ,  s is one of tfhe vectors in t,he lattice spanned 
by the rows of h.13. We will show that, it  is a “relat,ively short” vector in the 
lat.t.ice, wliich will enable us t.o confine it, to a hyperplane, tshiis producing a linear 
equat.iori relabing its coefficients. This will tjransla.t,e directly to a polynomial 
eqnat.ion on zo and yo: u (zg ,  yo) = 0, where u(z, y) is not, a multiple of p ( z ,  y). 
We can t.hen take the resultant of u ( z ,  y) with p(s ,  y) t,o find a single polynomial 
equation ~ ( s )  = 0 satisfied by zo, and solve this equation over Z to find 20. 

We proceed t,o est.iinate the sizes of the vectors in row lat,t,ice spanned by M3, 
by cut.iniat8ing the det,ertnina,nt of a square submatrix of M 3 .  Define t8he diagonal 
matrix W of tlirrierision ( k  + I)‘ x ( k  + I)’, with ( ~ ( y ,  / I . ) ,  y(g, 1 1 ) )  entry given 
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by SSY" .  III the matrix W M 1 ,  the Icft,-liand block is the identity. In the p( i ,  j) 
column of the righ,-hand side of W M 1 ,  the largest, elemcnt, has absolute value 
Xzl'j D.  T h a t  is, the element a t  (y(g, h ) ,  p(i, j ) )  is 

l ~ g ~ ' h ~ p s - j , h - j  g i + n  Y j t b  pa,$ L iyiy3(.ynyb$?,t,) 

where a = y - i and h = h, - j. Further, t,he right-hand columns are "nearly 
orthogonal", because they are part, of a Toeplit,z array. (A formal statement and 
proof appear in the appendix.) Associnted wit,h th i s  nea,r orthogonality, there is  
a. specific set, of I c 2  columns in the left,-haritl block. Whenever we del 
columns froiii a. rectarigular niat,rix h.l , we denot8c t,he rcsult,ing square matrix as 
M .  Delct,iiig l>liese columns from W MI leaves R mairix IVM1 wliose determinant 
sat.isfies 

I det,(WA?,)I = f 2 ( n i J ( * Y i Y j D ) )  
- - Q ( ( 2 y y ) k w  1 / 2 [ ] k 2 )  

blie c o i ~ s h i t ~  iiriplicit in R depending 011 Ic and tlic pa.t8tcni of nonzero cocfficients 
in t,lic polynoinial p(x, y) ,  as shown iii t.he appendix. For t.he polynomial in our 
example, t.he const,ant. is 1 (sce appendix) so we drop t,he "Q": 

I det(l.l/Ajl)l = (Ll-l..)k21k-1)/2,@' 

Since 
det(W) = I J ( X W ~ )  = (SYy k t l  )2k/2 

3 

g h  

we can cadc,iilate 

I ctct,(hJ1)l = I det,(Whf~)l/clet(W) > - gkL('\.1..)1k2(k-1)/2}-{(k+l)2k/2} 
- Dkz(,y y ) - k ( 3 k + l  ) / Z  = ( I l k  ( ' i - y ) - l 3 k t  1 , / a  k 

> '  
- 
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The saiiie cst,iiiiat>e applies t80 I det( nil,)\ because M a  was gotten from M I  
by elementary row oprat,ioiis. Also, because the lower right k 2  x lc2 submatrix 
of is t.lw idciit>iby nod t,hc upper right siibma.trix is zero, t.he same estimate 
applies t30 t,he tlct~r\rniinaiit of t8he iipper left (2k + I )  x ( 2 k  + 1) submatrix of M 2 ,  

naincly t,hc left,-hantl ( 2 k +  1) x (2lc+1) square subrnat#rix of  M3. For the following 
discussion, we call t,ha.t, squa,re submatrix L and its dimension n = 2k + 1. SO 
1 clet( I,)] > N"/".  

We a,pply la.t,ticc. basis rcdiiction t40 tlie row hasis of L ,  as prescribed in [2], 
to produce a reduced h i s  hl,  bz, . . . , bS. From the discussion in [a ] ,  tthe last 
elcment b,, of t.his reduced basis satisfies 

where b:, clmotes t.he component of b,, orthogonal to the subspace spanned by 
the vect,ors h l ,  . . ~ b,- 1. As long its 

1 
4 

k < - logz N - 210g2 log, N - Q(1) , 

we will havc t1ia.t. Ib:] I > Is!: 

1bE.l 3 I dct,( /,)11/n2-[71-1)/4 > N("/'~)(1/12"+1"2-~"4 

N - " l /R ' - ( ' l ' l " k ) )2 - " /2  > k + I > Is( 
Assiiiiic this inequality holds. For any row v&or t in thc latt,ice spanned 

Ily L ,  i f  t is not, in tlhe lat,tice spanned by bl,  . . . , b,L-l, t,heii it8s expression as 
a.n iiit,c.gc,r conibiiia.tion of t,hc bi involves b,, nont8rivia.lly. Tlius we have It I 2 
lb:l > k + 1 > Is[. Looked at. the other way, for ariy t in t,he lat,tice spanned by 
L ,  if It( 5 Isl, then t is in t h e  lattice spanned by bl,  . . . , bn-l. 

Chisi t ler  s it,self. Tlie n. = 2 k  + 1 entries of s corresponding to those columns 
in t,lit> left,-hand side tsliatj remain when we t>ransforrn h1 t,o A?, form a row vector 
s in t.lic lat.tice spanned Iiy L (since t,he right,-hand eleuieiits of s are 0). Also, 
Is1 5 Is!. Thus  6 is in  t,he la.ttt,ice spanned by b l , .  . . , b7%-1. 

N f m i l m s l i i p  in t,liis subspace gives us a linear relat,ion 011 t8he coefficients 
l 'gh  = x;yi expressing s as a linear coinbination of the rows of Ad1. T h i s  relation 
is linearly intlcptwdtnt of t,lic k 2  relations given by t,hr polynomials q i j  ( x ,  y) 
which tlet,eriiiinetl t.Iiat# s Itad right,-hand side 0 arid t81iiis was in  t,lie la.tt<ice of hf3 
to st.art. wit.11. So t.his reIa.t,ion tra,risla.t,es to a polynoiiiial relation u ( x 0 ,  yo) = 0 
where u(.e,  y) is iiot, a polynomial multiple of p(r, y). 

Ta-kc the  resulitnnt8 of p(.c, y) and U ( T ,  y) with respect, t.0 y. Because p(x, y) 
is irret1iicil)lc arid 7 i . ( x ,  y) is not, a. polynomial Iiiult8iple of y ( x ,  y), we have tha t  
Result,ant, (p(s,  y) ,  ?I ( s ,  y)) = ~ ( 2 )  is a nontrivial int,eger polynomial v ( x )  in one 
variable T sat'isfied hy : I - [ ) :  P J ( S ~ )  = 0. Since ~ ( c ,  y) has degree at, most k in each 
variable and  p ( s , y )  has degree 1 in cach variable, ~ ( s )  has  degree at, most 2 k .  
Solve ~ ( 2 : )  = U over B to find a small number of ca.ndidates for 211, namely those 
intcgvr solut,ions satisfying the bound (so( < X. 

Each ca.Jididat,e value of xo can be substit,ut,ed into p t.0 get an  equation 
p ( z o ,  y) = 0 which we can solve for y over Z, and select t,hose int,eger solut,ions 
sat.isfying the bound \yo 1 < E'. 
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’rhus we have proven: 

Theorem 1. If  u v  knoru an znteger N = PQ nrid 7uc h o w  the hzgh nrdcr (1/4+ 
c)(log2 N )  bzts of P ,  wzth c > 2/(1og, N ) ,  i h f n  zn izinc p o l y n o n t z a l  an log N a n d  
1 / c  we con dzscovrr P a n d  Q 

Proof. l h e  contlition 011 6 insures that k can  IF choscn to satisfy 

lo& O(l0g log N )  
1 

- - < k < - -  
46 4 

The coniplexi1,y is due to invocation of laltice basis reduction on 
size 2k + 1 I / (2c) ,  whose elelnetits are infegcrs with hit lengt,li 

a matrix of 
hounded by 

a polynomial in log N .  (We have to transforin our r a t  tonal matrices to integer 

Corollary2. I f  we know a n  znteger N = P& and wc know the hzgh order 
(1/4)(log, N )  bzts of P ,  then  In t u n e  p o l y n o m a n l  an log N we ran dascover  P 
a n d  Q. 

Proof Set c = 4/  log, N and do exhaustive search on O( I )  unknown high order 

iiiatricrq hy inultiplying liy smie iiitcgrr ) 

bits of .xo (or middle bits of P ) .  

3 Discussion on lattice methods 

‘l’he lat,t,ice hasis reduct8ion niet41iod is inlirrent.ly liiimr. If’ wc want, t,o relate sev- 
eral linknowits hy a polynomial cquation p ( , c ,  y) = Cgh py,L.rg?yh = 0, one nntJiiral 
approacli is t,o replace each monomial s g y h  Iiy a new independent variable r g h ,  

and Ict, 1 )  brconir a 1iriea.r rrlat,ion among s~vc ra l  indepeiideiit boiindetl variables: 
x y h  2)g11rg11 = 0, l r g h l  5 S ~ Y ~  = H.  q ~ , .  In order t80 get, results, we would need 
the  tlcsiretl vr>ctor to be among t,hc shortest, of t . 1 ~  Ia.t.t,ice; we would need its 
lcngt,li t30 be smaller Ihan the root of the  dct8erminant, of t,he appropia t re  square 
rna1,rix. ’I‘his requirement t8raiislat,es to (approxIina,tely) n Rgh 5 D ,  and t,his 
would imply severe rest#rictioris on S and I ? ,  namely (,YY)‘6+1)a’/2 5 U ,  where 
p ( z ,  y) has degree 6 i n  each va.riable. This is esseritmially bhe t>echnique uscd by 
[6] in  t,he iriodular sehting. 

In the present, paper we have extended tjliis approach by usiiig several poly- 
noiilials (4ij hut, reusing the satlie iridrptwdent I)ounded variables r g h .  we are 
a.blr to ainort.izc t,hP cost, of t,he several variables ovcr several equations. This 
a.ccounts for t,lie success of the prcsciit, niet81iotl in increa.sing the feasible sizes 
of s and Y. Specifically, each unknown l‘gh corrt8rit>ut8es a factor of X - . ~ Y - ”  tjo 
de t8(MI) ,  while each equation q i j ( r ,  y) = U contjrihut8es a factfor of SiE’jD.  In 
order for our t.ec1iniqucs t,o work, we require (let ( M l  ) >> I ,  which yields a bound 
on  S a,nd I -  i n  berms of I I .  Becaus~  we ha.ve several polynoniial equations, each 
cotitribut~ing positively to llie det8erniinant,, t,liis bound is relatively mild; we can 
toleratme larger ranges X ,  1’ on our varia.bles (in terms of D )  than with other 
inet,hotls, namely (SY)36 /2  < D ,  as we will see i i i  t,he next, sect,ion. 
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4 Other bivariate polynomials 

Similar techniques can be applied successfully t80 other polynomial equations 
besidcs t,hc givcri p ( z ,  y) = 0. They a.re not guaranteed for polyiioinials of more 
t.han tlwo varkbles; see Sect,ion 5. 

Evcw i u  tmhe case of t,wo variables, t,he present, t.echnique is sensitive to the 
foriri o f  the  polynoinial p ( z ,  y). For a n  arbit,rary quadratic polyrioiiiial wc could 
not, t,olera.l,r> ranges ,\, I' for the unknowns z, y q u i k  as largc as wc did Iiere. In 
i,hc casc t,liat, we  used for our example, a.lthoiigh !)(.I., y)  Iixs degree two, it does 
not, have t,crrris involviiig e2 or y2 ,  only 221. 

We sket(c11 hcrc liow t81ir bounds S and 1' dcpend on D and t8he forin of 
p .  Wlieii we td i i ia t , ed  I dct8( MI ) I  by dividing t,he est,imat,e of I det( LVM1 ) I  by 
det(U'), tlierr was  considerable cancellation in the powers of X and Y .  The 
term I det8(Lt'Mj)1 had a fact,or ,Y'J'jD for cach pair ( i , j )  with 0 5 i ,  j < k ;  
t81irse pairs rrpresent,ed t,hc nioiioriiials ziy' by which p(e, y) was inult8iplied. The  
Lerm de t<(W) had a factor X g Y "  for each pair ( g ,  h )  with 0 5 g ,  h < k + I ;  these 
pairs rcprwxit8etl Ihe iiioiiomials d y "  appcaring in these product>s z i y J p ( x ,  y). 
'I'lie range on g rxcerds t.lie range on i by 1 bcca.nsc p has degree 1 in z. If p 
had a.n x2 t.erin, we would have nceded to eiilarge Lhe range of g. ?'lie powers of 
S a n d  Y appcariiig i n  the ratio I det( WM,)I/dct(W) arise from the pairs ( g ,  h )  
out8sitle (,lie ra.nge of ( i ,  j ) ,  namely 

'I'hc inclusion of ail .r2 term would have enlargeti that region by ariotlier layer. 
This would have lctl directly to a stricter reqiiireinent on the sizes of S and Y 

If our ~ ~ ~ l y i i o ~ i i i a l  p ( r ,  y) has degree S in .r and T 111 y, then we can tolerate 
ranges X and 1 satisfjiiig 

by using polynomials qz3(s ,  y) in the raiigc 0 5 i , j  < k .  More generally, for any 
posit ive value of tlie parameter (1 me can tolerate X arid Y with 

, ~ - ~ + i c r r / 2 ) ~ . ' + 1 6 / ( ' U ) )  < ,TJ 

by allowing O 5 i < krr and 0 5 j < k .  
If p ( z ,  y )  has total dcgree 0 then wc can tolcrate about 

D > (,l-Y)h 

by allowing pairs ( i , j )  wit,li i >_ 0,  j 2 0,  aiid i + j < k .  'I'his is better t.han t,he 
previous appron.rh if 1-1 is a general bivariat,e polynomia.1 of tot8al degree 6 ,  but 
worse if (like (#lie current, example) it, is really of degree 5/2 separately in cach 
variable. 

Wc suiiiiiiarize t,liesc results: 
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Iir tame pulynornaal 211 6 ,  T a n d  log, D ,  our algorzthin wall produce al l  anteger 
pairs (Tn, yo) uuth IcoI < X, Iyol < a n d  p ( t o ,  yo) = 0. 

Let p ( r ,  y) he CIS before, b u l  walh l o ta l  degree 6 .  Asmine  

Prooj. The proof will he given in thc full payer, but is quite siinilar to tha t  of 
0 Tlieorem 1 arid Corollary 2.  

5 More variables 

Suppose wc have a polyiioniial p ( ~ ,  y, z )  in h e c  variables. We can niiinic the 
presciit, a,pproach. If thc ranges S, E', Z arc sinall tnough, we will end up with a 
polynomial relation u ( x ,  y, z ) ,  not, a miilt,iple of p ,  satisfied by (xo, yo, zo). Then 
t,lie rcsult>a.nt of p and 11 with rcspcct, t,o z will givc a polyiioiiiial v(x, y) in two 
va.rial)les. We can  t8hen try t,o solve 1' by t ,hP  current, mclhods. But, t,he degree of 

will hc ciiiit,c high, YO t,lia.l t.he ranges S and Y which can he t,olerat,ed will bc 
quit,e sniall.  This a.pproach will be unsa.tisfact#ory in geiiera.1. 

We still 1ia.vc a heurist,ic procediire which inigh,f work for a given multivariate 
polynomia.1. We are guaranteed to find a space of codirnension 1 (a hyperplane) 
conbairiing all the short, vect.ors of thc lat,tice M 3 .  But we might easily find a 
space of la.rger codimension. (There is a good possihility tha t  for many basis 
vcct,ors hi, t,he ortliogoiial coniponent Ib: I exceeds o w  known upper hound on 
IsI, and each one increases the c.odimensiori of the space which contains all the 
short vcct80rs.) We develop several polynomial equat,ioiis u i ( x ,  y, z )  sat>isfying 
ui(eo, YO, 2") = 0; the number of such cquat,ions is equal to the codirnension of 
t,his spact'. We can t8hen take resultant,s and gcd's of t,he va.rious ui and p and 
hope t,o prodnce a singlc polynomial equation in a single variable v (z0 )  = 0, 
which we solve over Z. This is only a heurist>ic approa,ch, which might or might 
not work for a, given polynomial p .  (Even if we can geiicratc sevcral equations, 
t,liey may not be independent .) 

of t,liis approa.ch in general. Manders 
a.nd Rdlcnian [3] show t,lial firiding su ihbly  bounded soliit,ioiis to p ~ ( s ,  y, z )  = 
x 2 - y N - z  = 0 is NP-hard. Nonet,heless t,hc q>proa,ch might work for a particiilar 
polynomial, and it is worth trying. 

There mustm be h i t s  to the su 
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6 Comparison with the  uiiivariate modular algorithm 

In a. companion paper El], t.he aubhor applies a very similar algorit,hin for the 
solut'ioii of a ~i i ivar ia t~e  modular polynomial. 

'I'wo differences helween the a.lgorithms are worth not.icing. In t5he modular 
rase, t.lre size X of the acceptable solutions 20 was relat.ed to the modulus N .  In 
Ilie present, integer case, there is no such natiiral measure as N ,  and we needed 
t,o develop a hound in terms of L), 

A second difference is that  in the modular case, we were able to define poly- 
noniials q; j ( . r )  = ~ : ' p ( x ) j  and assert t,hat* qij ( .ro)  = 0 (iiiod N.7);  the extra in- 
forinat,ioii ( m o d N J  versus mod N )  improved our bound on S from N1/(2"-') 
t,o N ' l ' .  In t , h c \  present8 iiikger c x w ,  using tlic polynomial tquat,ions q i j k ( x ,  y) = 
.r'yJ7>(r, y ) k  = 0 would not. help, because (for t,lie appropria.t,e ranges of indices 
i ,  j ,  k )  t,lw i n k g r r  linear conihiiiatioris of t,he polyiioinials q i j  are exactly t,he same 
as t,host, of t.hc pulynoiiiials q i j k .  For example, with i,hc given p ( 2 ,  y), 1; = 1, and 
sett,ing k = 1, t ,he int,eger lirwar combinatmions of 

so t,hat, wc cnd u1) defining the same mat,rix M I  ( u p  t,o element2ary roliimn 
operat,ioiis). ( I f  y is iiot monic, we appear 00 gain aomethiitg froin t.he high 
coefficient of p ,  but we act.ually lose a corresponding amount .  in the proof, so t'hat, 
using powers of 1) st,ill ririther helps nor hurts us.) 'I'his 1niic.h is also t,rue in the 
modu1a.r case; however, trlicre we gain the extra a.dvaiit,a.ge of working mod N3 a.s 
opposed t,o working iiiodN, and here in [.he int,eger case we ca.n derive no such 
a.dva 11 t.agr . 

7 Comparison with previous work 

R.ivesl and Shamir [5] solve t,tie probleni of fa,rt,oriza.tioii if given (log2 N ) / 3  hit>s 
rat1it.r t.lraii (log2 N)/4  bits as we do. They too lisp la.tt.ice iiiet,liods, but ,  o d y  
m e  po1ynoniia.l q,,,,(s, y)  = p ( z ,  y). 

Valldr et, al. [B] employ a met,hod similar to [5] in the case of 1nodula.r p l y -  
noinials, agaiii rising only ULK polynomial. 

Rlaurer [4] uses a differcnt approach, relatcd to factoring algorithms based 
on smoot81i inkgers, 1.0 ask (c  log, N )  yes/no oracle questions and determine the 
fact,orizat.ioti of A! with failure proiiability o (I-'/'). 

8 Application to  RSA variant 

Vaiistoiie arid Zucclicrato [7] propose an identity-based variant of RSA in which 
the user 's  r r rot lulus  N ic  related to his identity For examplc, ttic htgli order hits 
of N may he thc uwr 's  iinnie encoded i i i  ASCII. 
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lJnfortuiiately, the modulus N is generated in such a way tha t  somewhat 
more than the high order ((1/4)log2 N )  bits of Y are revealed to the  public. 
This  enables the prcscnt attack to discover the factorization of each modulus 
and break t(he scheme. 
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10 Appendix 

In this appendix wr give a proof of the technical result needecl in Section 2: t ha t  
several coluiiiris of the matrix W M 1  are ‘‘nearly orthogonal” A modification of 
this proof would apply to any Toeplitz matrix.  

We develop the corresponding result for a general bivariate polynomial. Let 
M t  Iw thc right-hand hlock of K’M1 Let p(s, y )  have degree 6 in each variable 
separately. Define indexing functions y and p for ,444: ‘I’he rows of h44 are indexed 
h y ~ ( ~ , I r ) = ( I c + 6 ) g + h f o r O ~ g , h < I c + 6 , a n d t l i e c o l u n i n s l ~ y ~ ( i , j ) = I c i + j  
for 0 5 i , j  < k .  Define 1J(.c,y) = y ( S x , I - y ) ,  so tha t  @ o b  = S a l ” p , ~  a n d  
Illax,b lpabl = n. 
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Lemma4. There is a k2 x k2 subrnatrix of M\ whose determinant has absolute
value at least

If the largest coefficient ofp is one ofpoo, pat,, pta orp^, then the absolute value
of the determinant is exactly Dk .

Proof. Select indices (a,b) so that D = \pai,\ is the largest coefficient ofp. Select
indices {c,d) to maximize the quantity

Select the rows
~f{c + i,d + j ) , 0 < ij < k

of M4 to create the desired submatrix M. The rows and columns of M are
indexed by f.i(i,j) ~ hi + j . The matrix element M^gih),n[i,j) ' s ^he coefficient
of xc+gyd+h in r'y3 p(x,y), namely

Mn(g,h),n(i,j) = Pg-i + c,h—j+d

Multiply the ft(y,h) row of M by tf{c-*)9+it,d-b)h^ a n d rnllitiply the n{i,j) col-
umn by ft-i(r-a)'-2(<i-l>)j^ t o create a new matrix M' with the same determinant.
Its typical element is

From maximally of (c, d) we find

from which

Thus each diagonal entry of M' is pcrf-
 a n d each off-diagonal entry is bounded

in absolute value by \pcd\8~[-g~l) "C1"^ . This implies that M' is diagonally
dominant, because the absolute values of the off-diagonal entries in its fi(i,j)
row sum to at most

= \Pr*\ X ["I +E ( n , ) ) ) 8- a 2 -

Each eigenvalue of M' is within ||pCd| of pC(j, and so exceeds |̂pcrf| in absolute
value. By choice of (c, d) we know
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For t81ie second chin1 of t,hc lerniiia,: If t,he largest, cweficient of fi is either f i00  or 
~ n n ,  set. (c,  d )  = ( a ,  b )  and not8ice tlmt M is an (upper or lower) triangular matrix 
whose dia.gona1 crit8ries have absolute value U .  If the largest coefficient is either 

or $ 6 0 ,  re_clrfine the indexing function on columns its p ( i , j )  = k i + ( k - l - j )  so 
that) a.gairi M is a triangular matrix whose diagonal entries have absolute value 
D.  Siniilar resulk hold if ( a ,  b )  is any corner of the Newt,on polygon associated 
wit,li i,. 

For the parlicular case p(x,y)  = (Po + x)(Qo + y) - N ,  we have 6 = 1, and 
tmhe only non-zero coefficierits of fi are i ;oo ,  6 0 6 ,  660 arid Fns; t,hus the second claim 
rllust~ holcl. 0 

The  Ieinma gives a k 2  x k 2  suhniatrix M of h f 4 ,  where M4 is the right-hand 
( k *  + b ) 2  x k 2  hlock of W M 1  To apply thc Icmma, wc nccd to find k 2  column 
inclices in t h e  left-hand block of WM1 whose deletion leaves a ( k  + 6)’ x ( k  + 6)2 
subniatrix W h l l  of IVM1 with I det(WAdl)l = 1 cict(K1)I Wc simply delete those 
coliiriiris whose indices match those of the k 2  rows accepted i n  Recall that the 
left-hand side of W M 1  IS the ideritity inat rix, 50 each reIiiaimig left-hand column 
has R single 1 among the O’s, and expansion hy minors gives Idet(LVM1)I = 
I (let (G) I as dcsircd 
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