

 Active Probing

 	Overview
	Paper
	Code & Data
	How to Check
	Probe Types
	Contact

	
	Overview

	

	
	
	
	Late in 2011, a systems administrator
		noticed suspicious entries in his SSH log files. The payloads did not conform to the
	protocol—instead they were just long random-looking byte strings. Careful analysis of the
	log files revealed a pattern: IP addresses in China sent these strange payloads, and the
	triggering event was a genuine SSH login, by a real user, from a different Chinese IP address.
	The administrator concluded that the probes must be related to censorship by the Great Firewall
	of China (GFW) and moved on. His writeup of these events became the first public documentation
	of what we call active probing, a critical component in the real-time, versatile, and
	nation-scale traffic classification system commonly known as the “Great Firewall.”
	

	
	Active probing is the most recent step in the ongoing arms race of Internet censorship. Users
	set up proxies to circumvent blocks; censors responded by identifying and blocking proxies by
	deep packet inspection (DPI); and circumventors made proxy protocols more difficult to detect in
	turn. Deprived of its capacity for easy, passive protocol identification, the censor now goes
	straight to the source and interrogates the server directly after it sees a potentially
	suspicious connection. The censor acts like a user by issuing its own connections to a
	suspected proxy server, as illustrated in the diagram to the right. If the server responds
	using a prohibited protocol, then the censor now takes some blocking action, such as adding its
	IP address to a blacklist.
	

	
	In this research project, we improve on existing
	knowledge and study the following aspects of the GFW:
	
	We identify various probe types and their volume over time since their first appearance
			in our data in 2013.
	Using network protocol fingerprinting techniques, we infer the physical structure of the
			probing system.
	We localize the sensors that trigger active probes and show they are likely distinct
			from China's main censorship infrastructure, the GFW.

	

	
	Our results show that the system operates in real-time, but suspends regularly for
	a short amount of time. It currently blocks at least five circumvention protocols and is
	upgraded regularly. We show that the system makes use of a vast amount of IP
	addresses, provide evidence that all these IP addresses are controlled by a central
	system, and we determined the location of the Great Firewall's sensors. We also
	publish our datasets and code to stimulate more research.
	

	This material is based upon work supported in part by the National
	Science Foundation under grant nos. #1223717, #1518918, #1540066, and
	#1518882. This work was also supported in part by funding from the Open
	Technology Fund through the Freedom2Connect Foundation and from the US
	Department of State, Bureau of Democracy, Human Rights and Labor. The
	opinions in this work are those of the authors and do not necessarily
	reflect those of any funding agency or governmental organization.

	

	

	
	Research Papers

	

	
	
	
	Our research paper was presented at the
	Internet Measurement Conference 2015
	in Tokyo, Japan. We also presented our work at the
	32nd
	Chaos Communication Congress in Hamburg, Germany.
	

	Examining How the Great Firewall Discovers Hidden Circumvention Servers
	[pdf, bib,
	IMC slides,
	32C3 slides]

		Roya Ensafi,
		David Fifield,
		Philipp Winter,
		Nick Feamster,
		Nicholas Weaver, and
		Vern Paxson

		In Proc. of: Internet Measurement Conference, ACM, 2015
	

	

	
	Code & Data

	

	
	
	
	
			Sybil dataset (181 MiB)

			SHA-1: 852ad06879d41b4614ad4e6f7658c371e16bcd27

			Repository: git clone https://github.com/NullHypothesis/active-probing-tools.git

			Contains a pcap file with active probes that were captured in a short time window.
		
	
			Log dataset and code (69 MiB)

			SHA-1: c245bb3c2f4b080a32878c192ca39a0c82adbc9d

			Repository: git clone https://www.bamsoftware.com/git/active-probing.git

			Contains logs of active probes sent to application ports on a single server since 2013, and the programs used to extract and process them.
		

	

	

	
	How to Check for Active Probing

	

	
	
	There are a few simple things you can do to check your own computer systems for evidence of
	active probing. Did you find something interesting? Let us know!
	

		
	Check for traffic from the IP address 202.108.181.70.
	
	
	
	The IP address 202.108.181.70 is disproportionately involved in active probing (sending
	half of
	all probes in one study), for reasons we do not understand.
	

	
	
	Look for certain requests in web server logs.
	
	
	
	The pattern POST /vpnsvc/connect.cgi indicates a
	SoftEther probe. The pattern
	GET /twitter.com indicates an AppSpot probe.
	

	
	
	Look for web requests with an unexpected Host header.
	

	An unexpected Host header, especially one pointing to a subdomain of
	appspot.com, is possible evidence of an AppSpot probe. Your web server may not
	log the Host header by default. In Apache, you can enable
	mod_log_forensic
	to see request headers.
	

	
		
	Check for binary garbage in application logs.
	
	
	
	The obfs2 and obfs3 protocols look like random binary noise by design.
	They tend to stand out in application logs. For example, here is an obfs2 probe seen in an
	Apache log:
	

192.0.2.1 - - [13/Jul/2015:05:56:50 -0600] "\xba\xf4\xf1gy\x9e\xe7O9..." 400 0 "-" "-"

	
	Try grepping your logs for escaped bytes. (Be aware that there may be many false positives;
	for example \x16\x03 usually simply indicates a TLS connection to a non-TLS
	port.)
	

grep '\\x' application.log

	

	

	

	
	Probe Types

	

	
	
	In the paper we describe a number of probe types that the GFW sends. Here are detailed probe
	payloads that we did not include in the paper for a lack of space.
	

	Tor

	
	The Great Firewall probes for Tor servers using a TLS connection containing a single
	Tor VERSIONS cell (see
	Section 4.1 of the linked specification). The VERSIONS cell declares support
	for versions 1 and 2 of the Tor protocol. In hexadecimal, the payload is this:
	

00 00 07 00 04 00 01 00 02

	
	The
	p0f
	TLS fingerprint of Tor probes is:
	

3.1:39,38,35,16,13,a,33,32,2f,5,ff:23:compr

	Obfs2 & Obfs3

	
	Apart from a few anomalies such as occasionally repeated payloads, the active probers'
	implementation of obfs2 and obfs3 complies with the protocol specification
	(obfs2 spec,
	obfs3 spec).
	Because the protocols appear random by design, no single probe sample characterizes them.
	For a better understanding of how they work, see a
	visual
	explanation of obfs2 and a
	visual
	explanation of obfs3.
	

	SoftEther

	
	SoftEther probes resemble the HTTPS-based client handshake of
	SoftEther VPN, a multi-protocol VPN client.
	

POST /vpnsvc/connect.cgi HTTP/1.1
Connection: Keep-Alive
Content-Length: 1972
Content-Type: image/jpeg

GIF89a...

	
	The value of the Content-Length header may vary. In the official SoftEther
	protocol, the Content-Length reflects a random amount of padding following the
	fixed part of the body. The body of the SoftEther probe we saw also included random padding,
	but because we only recovered one example in full detail, we cannot say for sure whether the
	length varies.
	

	
	Despite the Content-Type header, the POST body is a GIF image, not a JPEG,
	1,411 bytes in size. In the SoftEther source code, the file is found in
	src/Cedar/Watermark.c.
	As an image, it looks like this:
	

	

	
	The HTTPS request differs from that of the official SoftEther client. In July 2014, the
	official client
	added
	a Host header that is not reflected in the active probes. The probe's
	p0f
	TLS fingerprint is:
	

3.1:39,38,35,16,13,a,33,32,2f,5,4,15,12,9,14,11,8,6,3::compr

	
	This differs from that of the official client, which in version 4.15 had the fingerprint:
	

3.1:c014,c00a,39,38,88,87,c00f,c005,35,84,c012,c008,16,13,c00d,c003,a,c013,c009,33,32,9a,99,45,44,c00e,c004,2f,96,41,c011,c007,c00c,c002,5,4,15,12,9,ff:?0,b,a,f:compr

	AppSpot

	
	The AppSpot probe type has taken on a few different forms. What they all have in common is a
	special Host: webncsproxyXX.appspot.com header, where
	XX is a two-digit number. We believe that this kind of request is
	intended to discover unknown Google servers that are capable of providing access to a proxy
	running on Google App Engine. The User-Agent string is fairly distinctive,
	reflecting a version of the Chromium web browser that was
	current
	for two weeks in April 2014. The User-Agent is faked, as the rest of the
	header does not match what that version of Chromium sends (for example, genuine Chromium
	would send Accept-Encoding: gzip).
	

	
	Beginning on August 20, 2014, the AppSpot probe was a request for
	/:
	

GET / HTTP/1.1
Accept-Encoding: identity
Connection: close
Host: webncsproxyXX.appspot.com
Accept: */*
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/34.0.1847.116 Chrome/34.0.1847.116 Safari/537.36

	
	Between September 4, 2014 and March 3, 2015, the probe changed to request
	/twitter.com instead. (Such a request would cause the webncsproxy app to
	display the twitter.com home page.)
	

GET /twitter.com HTTP/1.1
Accept-Encoding: identity
Connection: close
Host: webncsproxyXX.appspot.com
Accept: */*
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/34.0.1847.116 Chrome/34.0.1847.116 Safari/537.36

	
	From March 3, 2015, onward, the probe changed back to requesting /:
	

GET / HTTP/1.1
Accept-Encoding: identity
Connection: close
Host: webncsproxyXX.appspot.com
Accept: */*
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/34.0.1847.116 Chrome/34.0.1847.116 Safari/537.36

	
	Starting on July 6, 2015, the probes come in pairs, separated by few seconds. The two probes
	in a pair do not come from the same IP address, and the number in the Host
	headers are different. The second probe has a shorter header.
	

GET / HTTP/1.1
Accept-Encoding: identity
Connection: close
Host: webncsproxyXX.appspot.com
Accept: */*
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/34.0.1847.116 Chrome/34.0.1847.116 Safari/537.36

GET / HTTP/1.1
Accept: */*
Content-Type: text/html
Proxy-Connection: Keep-Alive
Content-length: 0
Host: webncsproxyYY.appspot.com

	
	The p0f
	TLS fingerprint of the AppSpot probes is
	

3.1:39,38,88,87,35,84,16,13,a,33,32,9a,99,45,44,2f,96,41,5,4,15,12,9,14,11,8,6,3,ff:23:compr

	
	It differs markedly from the TLS fingerprint of the version of Chromium it purports to be:
	

3.2:c00a,c009,c013,c014,c007,c011,33,32,39,2f,35,a,5,4:?0,ff01,a,b,23,3374,10,7550,5,12:ver,rtime

	

	

	
	Contact

	

	
	
	If you have any questions or feedback, please get in touch with us!
	
	Roya Ensafi — (OpenPGP)
	David Fifield — (OpenPGP)
	Philipp Winter — (OpenPGP)

	
	

	

	
		Last updated: 2016-12-01

	

